The impetus for research into hydrogels based on selectively oxidized polysaccharides has been stimulated by the diversity of potential biomedical applications. Towards the development of a hemostatic wound dressing in this study, we creatively combined the (hemi)acetal and Schiff base bonds to prepare a series of multifunctional cryogels based on dialdehyde pullulan and dopamine. The designed structures were verified by NMR and FTIR spectroscopy. Network parameters and dynamic sorption studies were correlated with environmental scanning microscopy results, thus confirming the successful integration of the two components and the opportunities for finely tuning the structure-properties balance. The viscoelastic parameters (storage and loss moduli, complex and apparent viscosities, zero shear viscosity, yield stress) and the structural recovery capacity after applying a large deformation were determined and discussed. The mechanical stability and hemostatic activity suggest that the optimal combination of selectively oxidized pullulan and dopamine can be a promising toolkit for wound management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689722 | PMC |
http://dx.doi.org/10.3390/gels8110726 | DOI Listing |
Gels
December 2024
School of Medicine and Life Sciences, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia.
The local application of broad-spectrum antibiotics via polymeric drug delivery systems is a promising alternative to their systemic administration in wound healing, prevention and treatment of infections associated with surgical implants. However, low and poorly controlled loading efficiency and 100% burst release are common problems for the materials with weak physical interaction between antibiotics and polymeric matrices. Here, we report a new multifunctional carboxymethyl chitosan (CMC) cryogel, which efficiently prevents bacterial adhesion to the surface, kills bacteria in the solution via controlled release of ciprofloxacin (CIP), and promotes fibroblast proliferation.
View Article and Find Full Text PDFGels
December 2024
Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland.
Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. Among them, cheap and easy recycling, as well as stability issues, should be addressed.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China. Electronic address:
The purification of polysaccharides is an essential preliminary step in determining their chemical structure, although it presents significant challenges. In this research, a macro-porous monolith of quaternary chitosan cryogel was synthesized for the purification of a neutral polysaccharide from Boletus auripes. A homogeneous neutral polysaccharide (BAP-1a1) with a weight-average molecular weight of 4.
View Article and Find Full Text PDFSmall
December 2024
Fiber and Particle Engineering Research Unit, Faculty of Technology, University of Oulu, P.O. Box 4300, Oulu, 90014, Finland.
Here, hybrid stimuli-responsive (exhibiting pyroelectricity and piezoelectricity) porous cryogels are engineered by embedding tourmaline nanoparticles (TNs) in a cellulose nanofiber (CNF) skeleton to generate high-performance CNF-TN-based airborne particulate matter (PM) filters. First, single-layer hybrid cryogels with varying TN contents (0-5% w v) are assembled, and the design principles for multilayered filters are established based on a novel sequential pre-freezing and freeze-drying technique. As observed, the embedded TNs transformed the CNF network into a more homogeneous, isotropic, and firm structure, thus improving the structural integrity and thermal stability of the assembled cryogels while maintaining their ultrahigh porosity and low density.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:
Sustainable lignin-based materials are becoming increasingly valuable in agriculture, where climate change and nutrient deficiencies threaten crop productivity. We developed lignin-derived cryogels using waste biomass to improve soil nutrients, seed germination, water retention, and photosynthetic pigment levels. These cryogels were synthesized with gum Arabic (GA), keratin (K), and N-vinylpyrrolidone at lignin concentrations of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!