Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aerogels are of increasing interest because of their exceptionally large surface area, porous structure, and low weight. Despite the significant increase in interest in the subject of starch-based aerogels, the number of detailed studies is rather scarce, which is especially evident in the case of chemically modified derivatives. Therefore, the study aims to evaluate the physicochemical properties of aerogels from chemically modified potato starch preparations (E 1422 and E 1450) obtained both from normal and waxy starches. Aerogels were prepared through the retrogradation of starch pastes followed by the gradual replacement of water with ethyl alcohol. The obtained preparations were characterized in terms of their bulk density, oil-binding capacity, as well as the texture and rheological properties of the formed pastes. Moreover, their usefulness was evaluated in an emulsion system employing rheological and low-field NMR methods. The obtained aerogels were characterized by a lower bulk density of 0.18-0.59 g/cm and 5.4-6.6 times higher oil-binding capacity compared to native potato starch. The chemical modification of starch helped to further alter the functional properties of the obtained aerogels, making them more effective oil binders, emulsifiers, and stabilizers (increasing the stability from 55 to 90%), which was especially evident for E 1450 preparation. Amylose content improved the aerogel properties, as waxy preparations were characterized by worse functional properties with the only exception of improved thickening ability. The most beneficial properties for the preparation of emulsions were observed for the aerogel obtained based on E 1450 normal potato starch.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689880 | PMC |
http://dx.doi.org/10.3390/gels8110720 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!