Heparin, usually isolated from porcine intestinal mucosa, is an active pharmaceutical ingredient of great material value. Traditionally, diverse types of commercial resins were employed as an adsorbent for heparin retrieval from biological samples. However, more recent years have encouraged the advent of new cost-effective adsorbents to achieve enhanced heparin retrieval. Inexpensive cationic ammonium-functionalized silica gels, monodispersed with larger surface area, porosity, and higher thermal stability, were chosen to evaluate the heparin recovery yield from porcine intestinal mucosa. We demonstrated that higher positively charged and less bulky quaternary modified silica gel (e.g., QDASi) could adsorb ~28% (14.7 mg g) heparin from the real samples. In addition, we also determined suitable surface conditions for the heparin molecule adsorption by mechanistic studies and optimized different variables, such as pH, temperature, etc., to improve the heparin adsorption. This is going to be the first reported study on the usage of quaternary amine-functionalized silica gel for HEP uptake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687748PMC
http://dx.doi.org/10.3390/bioengineering9110606DOI Listing

Publication Analysis

Top Keywords

porcine intestinal
12
intestinal mucosa
12
silica gel
12
heparin
8
heparin recovery
8
ammonium-functionalized silica
8
heparin retrieval
8
efficient economic
4
economic heparin
4
recovery porcine
4

Similar Publications

As sensors in the gut, tuft cells integrate a complex array of luminal signals to regulate the differentiation fate of intestinal stem cells (ISCs), which trigger a loop of tuft cell-ISC-goblet cell after parasitic infection. As a plant-derived alkaloid, Matrine plays a prominent role for standardizing ISC functions in Eimeria necatrix (EN)-exposed chicks. In this study, we investigated the modulation effects of Matrine on the specific intestinal epithelial cell loop in EN-exposed chicks in vivo and intestinal organoids (IOs) ex vivo.

View Article and Find Full Text PDF

Background/objectives: Histamine intolerance is primarily caused by a deficiency in the diamine oxidase (DAO) enzyme at the intestinal level. The reduced histamine degradation in the gut leads to its accumulation in plasma, thereby causing multiple clinical manifestations, such as urticaria, diarrhea, headache, dyspnea, or tachycardia, among others. The dietary management of this food intolerance consists of the follow-up of a low-histamine diet, often combined with DAO supplementation.

View Article and Find Full Text PDF

The aim of this study was to elucidate the impact of porcine pancreatic enzymes (Creon pancrelipase) in comparison to microbial-derived alpha amylase (MD amylase) on the small intestine wall structure, mucosal glycogen accumulation, and enterocyte turnover. The impact of enzyme supplementation on the small intestine was explored in 18 pigs with surgically induced exocrine pancreatic insufficiency (EPI). Four healthy pigs served as the control group.

View Article and Find Full Text PDF

Weaning in piglets presents significant physiological and immunological challenges, including gut dysbiosis and increased susceptibility to post-weaning diarrhoea (PWD). Abrupt dietary, environmental, and social changes during this period disrupt the intestinal barrier and microbiota, often necessitating antimicrobial use. Sustainable dietary strategies are critical to addressing these issues while reducing reliance on antimicrobials.

View Article and Find Full Text PDF

Background: Fasciolopsis buski is a large fluke that parasitises the human small intestine, with its infection in the biliary tract being even rarer. Given its relatively rare occurrence in recent years, the clinical diagnosis of F. buski infections can pose certain challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!