Chitosan Micro-Membranes with Integrated Gold Nanoparticles as an LSPR-Based Sensing Platform.

Biosensors (Basel)

3 B's Research Group, I3Bs-Research Institute on Biomaterials, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Biodegradables and Biomimetics of University of Minho, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.

Published: November 2022

Currently, there is an increasing need to develop highly sensitive plasmonic sensors able to provide good biocompatibility, flexibility, and optical stability to detect low levels of analytes in biological media. In this study, gold nanoparticles (Au NPs) were dispersed into chitosan membranes by spin coating. It has been demonstrated that these membranes are particularly stable and can be successfully employed as versatile plasmonic platforms for molecular sensing. The optical response of the chitosan/Au NPs interfaces and their capability to sense the medium's refractive index (RI) changes, either in a liquid or gas media, were investigated by high-resolution localized surface plasmon resonance (HR-LSPR) spectroscopy, as a proof of concept for biosensing applications. The results revealed that the lowest polymer concentration (chitosan (0.5%)/Au-NPs membrane) presented the most suitable plasmonic response. An LSPR band redshift was observed as the RI of the surrounding media was incremented, resulting in a sensitivity value of 28 ± 1 nm/RIU. Furthermore, the plasmonic membrane showed an outstanding performance when tested in gaseous atmospheres, being capable of distinguishing inert gases with only a 10 RI unit difference. The potential of chitosan/Au-NPs membranes was confirmed for application in LSPR-based sensing applications, despite the fact that further materials optimization should be performed to enhance sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687842PMC
http://dx.doi.org/10.3390/bios12110951DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
lspr-based sensing
8
chitosan micro-membranes
4
micro-membranes integrated
4
integrated gold
4
nanoparticles lspr-based
4
sensing platform
4
platform currently
4
currently increasing
4
increasing develop
4

Similar Publications

A novel employment of single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) was developed, where a microextraction (ME) probe is used to sample nanoparticles from a surface and analyze them in a single analytical step. The effects of several parameters on the performance of ME-SP-ICP-MS were investigated, including the flow rate, choice of carrier solution, particle size, and the design of the microextraction probe head itself. The optimized ME-SP-ICP-MS technique was used to compare the extraction efficiency (EE, defined as the ratio of particles measured to particles deposited on the surface) of the commercial probe head to a newly designed SP polyether ether ketone (PEEK) probe head.

View Article and Find Full Text PDF

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.

View Article and Find Full Text PDF

Applications of Au Nanoclusters in Photon-Based Cancer Therapies.

Nanomaterials (Basel)

December 2024

Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.

Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies.

View Article and Find Full Text PDF

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.

Adv Healthc Mater

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!