Polyamidoamine (PAMAM) dendrimers are exploited as drug carriers in various biomedical research fields, especially cancer therapy. The present study analyzes the interactions occurring between differently functionalized PAMAM dendrimers, namely, amine, acetamide, and 3-methoxy-carbonyl-5-pyrrolidonyl ("pyrrolidone"), and model membranes, namely, sodium dodecyl sulfate (SDS), sodium hexadecylsulfate (SHS) micelles, and egg-lecithin liposomes. For this purpose, the dendrimers were spin-labeled with the 3-carbamoyl-PROXYL radical. H-NMR spectra allowed the verification not only that labeling was successful but also that acetamide and (even more so) pyrrolidone functions shield the proton signals from the influence of the neighboring nitroxide groups. The computer-aided analysis of the electron paramagnetic resonance (EPR) spectra showed that the dendrimers with the acetamide function largely (60%) entered the SDS-micelles interface, while the amino-dendrimer electrostatically interacted with both the SDS and SHS surface forming dendrimer aggregates in solution. The pyrrolidone-dendrimers showed an intermediate behavior between those with the amino and acetamide functions. The acetamide- and pyrrolidone-dendrimers weakly interacted with the lecithin liposome surface, with a synergy between hydrophilic and hydrophobic interactions. Conversely, liposomes/amino-dendrimers interactions were quite strong and led to dendrimer aggregation at the liposome surface in solution. This information showed that acetamide- and pyrrolidone-dendrimers may be used as good alternatives to amino-dendrimers for drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c05123DOI Listing

Publication Analysis

Top Keywords

pamam dendrimers
12
functionalized pamam
8
acetamide- pyrrolidone-dendrimers
8
liposome surface
8
dendrimers
5
interactions
4
interactions functionalized
4
dendrimers model
4
model cell
4
cell membranes
4

Similar Publications

A novel poly(amidoamine)-modified electrolyte-insulator-semiconductor-based biosensor for label-free detection of ATP.

Anal Methods

January 2025

Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.

View Article and Find Full Text PDF

Improving Sensitivity and Resolution of Dendrimer Identification in MALDI-TOF Mass Spectrometry Using Varied Matrix Combinations.

Polymers (Basel)

January 2025

Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a well-known technique for polymer analysis, particularly for determining the molecular weight and structural details of dendrimers. In this study, we evaluated the performance of various matrices, such as 2',4',6'-trihydroxyacetophenone (THAP), α-cyano-4-hydroxycinnamic acid (HCCA), and sinapinic acid (SA), and their combinations, on the sensitivity and resolution of poly(amidoamine) (PAMAM) dendrimers of different generations (G3.0, G4.

View Article and Find Full Text PDF

The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly.

Polymers (Basel)

January 2025

Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.

View Article and Find Full Text PDF

A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode.

View Article and Find Full Text PDF

Polymer Gels Based on PAMAM Dendrimers Functionalized with Caffeic Acid for Wound-Healing Applications.

Gels

January 2025

Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.

The wound-healing process has usually been related to therapeutic agents with antioxidant properties. Among them, caffeic acid, a cinnamic acid derivative, stands out. However, the use of this natural product is affected by its bioavailability and half-life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!