Calculating the hydration free energy of a macromolecule in all-atom simulations has long remained a challenge, necessitating the use of models wherein the effect of the solvent is captured without explicit account of solvent degrees of freedom. This situation has changed with developments in the molecular quasi-chemical theory (QCT)─an approach that enables calculation of the hydration free energy of macromolecules within all-atom simulations at the same resolution as is possible for small molecular solutes. The theory also provides a rigorous and physically transparent framework to conceptualize and model interactions in molecular solutions and thus provides a convenient framework to investigate the assumptions in implicit solvent models. In this study, we compare the results using molecular QCT versus predictions from EEF1, ABSINTH, and GB/SA implicit solvent models for polyglycine and polyalanine solutes covering a range of chain lengths and conformations. The hydration free energies or the differences in hydration free energies between conformers obtained from the implicit solvent models agree with explicit solvent results, with the deviations being largest for the group additive EEF1 and ABSINTH models. GB/SA does better in capturing the qualitative trends seen in explicit solvent results. Analysis founded on QCT reveals the critical importance of the cooperativity of hydration that is inherent in the hydrophilic and hydrophobic contributions to hydration─physics that is not well captured in additive models but somewhat better accounted for by means of a dielectric in the GB/SA approach.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c05725DOI Listing

Publication Analysis

Top Keywords

hydration free
20
implicit solvent
16
solvent models
16
free energies
12
solvent
8
free energy
8
all-atom simulations
8
eef1 absinth
8
explicit solvent
8
models
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!