Background: During prostate stereotactic body radiation therapy (SBRT), prostate tumor translational motion may deteriorate the planned dose distribution. Most of the major advances in motion management to date have focused on correcting this one aspect of the tumor motion, translation. However, large prostate rotation up to 30° has been measured. As the technological innovation evolves toward delivering increasingly precise radiotherapy, it is important to quantify the clinical benefit of translational and rotational motion correction over translational motion correction alone.
Purpose: The purpose of this work was to quantify the dosimetric impact of intrafractional dynamic rotation of the prostate measured with a six degrees-of-freedom tumor motion monitoring technology.
Methods: The delivered dose was reconstructed including (a) translational and rotational motion and (b) only translational motion of the tumor for 32 prostate cancer patients recruited on a 5-fraction prostate SBRT clinical trial. Patients on the trial received 7.25 Gy in a treatment fraction. A 5 mm clinical target volume (CTV) to planning target volume (PTV) margin was applied in all directions except the posterior direction where a 3 mm expansion was used. Prostate intrafractional translational motion was managed using a gating strategy, and any translation above the gating threshold was corrected by applying an equivalent couch shift. The residual translational motion is denoted as . Prostate intrafractional rotational motion was recorded but not corrected. The dose differences from the planned dose due to + , ΔD( + ) and due to alone, ΔD( ), were then determined for CTV D98, PTV D95, bladder V6Gy, and rectum V6Gy. The residual dose error due to uncorrected rotation, was then quantified: = ΔD( + ) - ΔD( ).
Results: Fractional data analysis shows that the dose differences from the plan (both ΔD( + ) and ΔD( )) for CTV D98 was less than 5% in all treatment fractions. ΔD( + ) was larger than 5% in one fraction for PTV D95, in one fraction for bladder V6Gy, and in five fractions for rectum V6Gy. Uncorrected rotation, induced residual dose error, , resulted in less dose to CTV and PTV in 43% and 59% treatment fractions, respectively, and more dose to bladder and rectum in 51% and 53% treatment fractions, respectively. The cumulative dose over five fractions, ∑D( + ) and ∑D( ), was always within 5% of the planned dose for all four structures for every patient.
Conclusions: The dosimetric impact of tumor rotation on a large prostate cancer patient cohort was quantified in this study. These results suggest that the standard 3-5 mm CTV-PTV margin was sufficient to account for the intrafraction prostate rotation observed for this cohort of patients, provided an appropriate gating threshold was applied to correct for translational motion. Residual dose errors due to uncorrected prostate rotation were small in magnitude, which may be corrected using different treatment adaptation strategies to further improve the dosimetric accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099881 | PMC |
http://dx.doi.org/10.1002/mp.16094 | DOI Listing |
Sci Rep
December 2024
School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.
Given the higher fall risk and the fatal sequelae of falls on stairs, it is worthwhile to investigate the mechanism of dynamic balance control in individuals with knee osteoarthritis during stair negotiation. Whole-body angular momentum ([Formula: see text]) is widely used as a surrogate to reflect dynamic balance and failure to constrain [Formula: see text] may increase the fall risk. This study aimed to compare the range of [Formula: see text] between people with and without knee osteoarthritis during stair ascent and descent.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, Mehmet Akif Ersoy University, Burdur, Turkey.
Civil structures are prone to dynamic loadings such as strong winds or ground excitations where torsion becomes an ongoing issue. This arises from a lack of coincidence of the center of mass (CM) and rigidity (CR), known as eccentricity. Seismic design codes often introduce two types of eccentricity: inherent (geometric) and accidental.
View Article and Find Full Text PDFBioconjug Chem
December 2024
School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China.
Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane.
View Article and Find Full Text PDFJ Pers Med
November 2024
Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy.
. Adult medulloblastoma (AMB) patients should receive postoperative craniospinal irradiation (CSI) as a standard treatment. Volumetric intensity-modulated arc therapy (VMAT) is a promising method for CSI.
View Article and Find Full Text PDFUltrasound Med Biol
December 2024
Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden.
Objectives: The enormous burden that cardiovascular diseases put on individuals and societies warrants reliable biomarkers of disease risk to optimize disease prevention. We studied longitudinal movement (LMov) in arterial walls using ultrasound of the common carotid artery (CCA). We believe that LMov could be a sensitive biomarker of cardiovascular health and in this study, we evaluate the intra-observer repeatability and inter-observer precision of our method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!