Lead zirconate (PbZrO, PZ) is a prototype antiferroelectric (AFE) oxide from which state-of-the-art energy storage materials are derived by chemical substitutions. A thorough understanding of the structure-property relationships of PZ-based materials is essential for both performance improvement and the design of more environmentally friendly replacements. (PbBa)ZrO (PBZ) can serve as a model system for studying the effect of A-site substitution in the perovskite lattice, with barium destabilizing the AFE state. Here, the two-dimensional Pb solid-state NMR spectra of PZ and PBZ were recorded to analyze the local structural role of barium substitution. At low substitution levels, Pb NMR spectroscopy reveals the presence of Pb-O bond length disorder. Upon crossing the threshold value of for the macroscopic phase transition into a ferroelectric (FE) state, the barium cations cause local-scale lattice expansions in their vicinity, resulting in the collapse of two lead lattice sites into one. The stabilization of the larger volume site coincides with the favoring of larger lead displacements. We also observed more covalent bonding environments which may originate from the lower polarizability of the barium cations, facilitating the formation of stronger Pb-O bonds in their vicinity. From the local structural point of view, we propose that the substitution-induced AFE → FE phase transition is therefore related to an increasing correlation of larger lead displacements in larger oxygen cavities as the barium content increases. Our results also highlight Pb NMR spectroscopy as a valuable method for the characterization of the structure-property relationships of PbZrO-based AFE and FE oxides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706679PMC
http://dx.doi.org/10.1039/d2dt01302aDOI Listing

Publication Analysis

Top Keywords

structure-property relationships
8
local structural
8
nmr spectroscopy
8
phase transition
8
barium cations
8
larger lead
8
lead displacements
8
barium
5
fundamental workings
4
workings chemical
4

Similar Publications

Modulating the Oxygen Evolution Reaction of Single-Crystal Cobalt Carbonate Hydroxide via Surface Fe Doping and Facet Dependence.

J Phys Chem Lett

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.

View Article and Find Full Text PDF

Attention-Based Interpretable Multiscale Graph Neural Network for MOFs.

J Chem Theory Comput

January 2025

The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.

View Article and Find Full Text PDF

Advancing efficiency in deep-blue OLEDs: Exploring a machine learning-driven multiresonance TADF molecular design.

Sci Adv

January 2025

Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.

The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.

View Article and Find Full Text PDF

Traditional tetrahedral-based mid-to-far infrared (MFIR) nonlinear optical (NLO) crystals often face limitations due to the optical anisotropy constraints imposed by their highly symmetric structures. In contrast, the relatively rare trigonal pyramidal [TeS] functional unit characterized by its asymmetric structure and stereochemically active lone pair (SCALP), offers improved optical anisotropy, hyperpolarizability and a broader IR transparency range. Despite its potential, synthetic challenges have hindered the development of MFIR NLO crystals that incorporate this unit, with only one example reported to date.

View Article and Find Full Text PDF

Opportunities in Bottlebrush Block Copolymers for Advanced Materials.

ACS Nano

January 2025

Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.

Bottlebrush block copolymers (BBCPs) are a unique class of materials that contain a backbone with densely grafted and chemically distinct polymeric side chains. The nonlinear architecture of BBCPs provides numerous degrees of freedom in their preparation, including control over key parameters such as grafting density, side chain length, block arrangement, and overall molecular weight. This uniquely branched structure provides BBCPs with several important distinctions from their linear counterparts, including sterically induced side chain and backbone conformations, rapid and large self-assembled nanostructures, and reduced or eliminated entanglement effects (assuming sufficient grafting density and that the molecular weight of the side chains is below their respective entanglement molecular weight).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!