A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3051
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3053

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3053
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased chromatin accessibility facilitates intron retention in specific cell differentiation states. | LitMetric

AI Article Synopsis

  • Dynamic intron retention (IR) plays a crucial role in vertebrate biology and is linked to various diseases, including cancers, making its regulation important to study.
  • The authors used multiple sequencing techniques and machine learning to analyze how epigenetic factors and intrinsic features affect IR in human immune cells.
  • Their findings indicate that chromatin structure significantly influences IR and could lead to new therapeutic strategies targeting abnormal splicing.

Article Abstract

Dynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR is associated with numerous human diseases including several cancers. Despite consistent reports demonstrating that intrinsic sequence features can help introns evade splicing, conflicting findings about cell type- or condition-specific IR regulation by trans-regulatory and epigenetic mechanisms demand an unbiased and systematic analysis of IR in a controlled experimental setting. We integrated matched mRNA sequencing (mRNA-Seq), whole-genome bisulfite sequencing (WGBS), nucleosome occupancy methylome sequencing (NOMe-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) data from primary human myeloid and lymphoid cells. Using these multi-omics data and machine learning, we trained two complementary models to determine the role of epigenetic factors in the regulation of IR in cells of the innate immune system. We show that increased chromatin accessibility, as revealed by nucleosome-free regions, contributes substantially to the retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns are key for them to evade splicing. This study suggests an important role for chromatin architecture in IR regulation. With an increasing appreciation that pathogenic alterations are linked to RNA processing, our findings may provide useful insights for the development of novel therapeutic approaches that target aberrant splicing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723627PMC
http://dx.doi.org/10.1093/nar/gkac994DOI Listing

Publication Analysis

Top Keywords

increased chromatin
8
chromatin accessibility
8
intron retention
8
evade splicing
8
accessibility facilitates
4
facilitates intron
4
retention specific
4
specific cell
4
cell differentiation
4
differentiation states
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!