Introduction: For patients undergoing THR, measuring the postoperative acetabular anteversion precisely plays a pivotal role in the prognosis. However, using elliptical methods mandates computerized equipment that is frequently in shortage in remote areas and developing countries. We invented a laser projector utilizing the ellipse method to measure the acetabular anteversion directly. The aim is to examine the consistency and validity of the laser projector as compared to our original software, Elliversion.

Materials And Methods: We retrospectively collected 50 postoperative pelvis radiographs including acetabulum from our institution. One investigator first measured the anteversion of included radiographs through Elliversion software as the control group. Subsequently, two operators independently used the laser projector for measurements in two separate periods with 1-day intervals as the experimental group. Our analysis was comprised of intra- and inter-observer comparisons and reliability, which investigated both the consistency and validity, by using two-sample student's -test and intraclass correlation coefficient.

Results: There was no significant difference in measuring the anteversion through laser projectors between two operators ( = 0.54), with excellent inter-observer reliability (ICC, 0.967). The estimated effect in the anteversion measurement between the Elliversion and laser projector was also comparable, with the ICC level of 0.984, indicating excellent reliability.

Conclusion: Our study reported the consistency and validity of this laser projector as there is no significant difference between Elliversion and Laser projector, notably with excellent intra- and inter-observer reliability. We look forward to helping elevate clinical acumen when doctors provide care to patients after THR, especially in remote areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637855PMC
http://dx.doi.org/10.3389/fsurg.2022.1033453DOI Listing

Publication Analysis

Top Keywords

laser projector
28
acetabular anteversion
12
consistency validity
12
laser
8
measuring postoperative
8
postoperative acetabular
8
remote areas
8
validity laser
8
intra- inter-observer
8
inter-observer reliability
8

Similar Publications

Conventional laser micromachining technologies rely on trial-and-error optimization to obtain precise surface geometry. In this study, we present a laser micromachining setup that enables the preparation of the desired surface geometry without the need for parameter exploration. The setup consists of a laser scanning system, a coaxial imaging system, a paraxial laser line projector, and a three-axis stage.

View Article and Find Full Text PDF

A new, to the best of our knowledge, fringe projector using the kinoform is proposed in this Letter. The kinoform array makes the hologram easy to manufacture, and the phase shift is realized by light source shift. The fringes can be shifted at a high speed due to the high-speed switch of the light source.

View Article and Find Full Text PDF

Faced with measurement conditions such as high-temperature forging, strict prohibition of surface contamination, and toxic environments, using the projection point of an optical target projector (referred to as an "optical projector") as a photogrammetric target has become a necessary method of high-precision industrial photogrammetry. In connection with the current industrial demand, we have analyzed the principles of optical projectors and introduced their optical characteristics and advantages in the field of industrial photogrammetry. On this basis, a series of tests such as brightness, roundness, and so on were conducted to determine the basic properties of the optical projector.

View Article and Find Full Text PDF

Dual-mode optical imaging can simultaneously provide morphological and functional information. Furthermore, it can be integrated with projection mapping method to directly observe the images in the region of interest. This study was aimed to develop a dual-mode optical projection mapping system (DOPMS) that obtains laser speckle contrast image (LSCI) and subcutaneous vein image (SVI) and projects onto the region of interest, minimizing the spatial misalignment between the regions captured by the camera and projected by a projector.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how pulsed light can create pressure changes in materials, leading to tactile sensations, a process known as the photoacoustic or light-induced thermoelastic effect.
  • Different light sources, including a pulsed laser, a miniature diode laser, and a DLP projector, were tested to see how accurately participants could perceive and describe the sensations produced.
  • Results show that participants experienced predominant mechanical sensations, particularly vibrations, at their fingertips and were able to detect and differentiate the light sources despite variations in pulse widths and light properties.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!