Glioma has the highest fatality rate among intracranial tumours. Besides, the heterogeneity of gliomas leads to different therapeutic effects even with the same treatment. Developing a new signature for glioma to achieve the concept of "personalised medicine" remains a significant challenge. The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) were searched to acquire information on glioma patients. Initially, correlation and univariate Cox regression analyses were performed to screen for prognostic pyroptosis-related long noncoding RNAs (PRLs). Secondly, 11 PRLs were selected to construct the classifier using certain algorithms. The efficacy of the classifier was then detected by the "timeROC" package for both the training and validation datasets. CIBERSORT and ESTIMATE packages were applied for comparing the differences (variations) in the immune landscape between the high- and low-risk groups. Finally, the therapeutic efficacy of the chemotherapy, radiotherapy, and immunotherapy were assessed using the "oncoPredict" package, survival analysis, and the tumour immune dysfunction and exclusion (TIDE) score, respectively. A classifier comprising 11 PRLs was constructed. The PRL classifier exhibits a more robust prediction capacity for the survival outcomes in patients with gliomas than the clinical characteristics irrespective of the dataset (training or validation dataset). Moreover, it was found that the tumour landscape between the low- and high-risk groups was significantly different. A high-risk score was linked to a more immunosuppressive tumour microenvironment. According to the outcome prediction and analysis of the chemotherapy, patients with different scores showed different responses to various chemotherapeutic drugs and immunotherapy. Meanwhile, the patient with glioma of WHO grade Ⅳ or aged >50 years in the high risk group had better survival following radiotherapy. We constructed a PRL classifier to roughly predict the outcome of patients with gliomas. Furthermore, the PRL classifier was linked to the immune landscape of glioma and may guide clinical treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637659 | PMC |
http://dx.doi.org/10.3389/fgene.2022.1026192 | DOI Listing |
Discov Oncol
January 2025
Department of Oncology, Yanbian University Hospital, Yanji, 133000, China.
Background: Recent studies have highlighted the role of RNA modification, that is, the dysregulation of epitranscriptomics, in tumorigenesis and progression. The potential for undoing epigenetic changes may develop novel therapeutic and prognostic approaches. However, the roles of these RNA modifications in the tumor microenvironment (TME) are still unknown.
View Article and Find Full Text PDFGenes Chromosomes Cancer
January 2025
Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden.
Pleomorphic adenoma (PA) is the most common salivary gland tumor. PAs are characterized by chromosomal rearrangements of 8q12 and 12q14-15, leading to gene fusions involving the PLAG1 and HMGA2 oncogenes. Here, we performed the first comprehensive study of the transcriptomic and gene fusion landscape of 38 cytogenetically characterized PAs.
View Article and Find Full Text PDFOncoimmunology
December 2025
Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8 T cells and NK cells and can generate durable responses in a subset of patients.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Background: T cell receptor (TCR) signaling pathway is closely related to tumor progress and immunotherapy. This study aimed to explore the clinical significance, prognosis, immune infiltration and chemotherapy sensitivity of TCR in osteosarcoma (OS).
Material And Methods: OS data were obtained from TARGET and GEO database.
Heliyon
January 2025
Department of Zoology, The University of Burdwan, West Bengal, India.
Thalassemia is a hematological disorder caused by mutations in the hemoglobin gene, often necessitating regular blood transfusions. These frequent transfusions exert continuous pressure on patients' immune systems. Despite extensive research on the hematological aspects of thalassemia, few studies have explored the immune status of these patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!