Introduction: Neuronal loss caused by spinal cord injury (SCI) usually contributes to irreversible motor dysfunction. Promoting neuronal regeneration and functional recovery is vital to the repair of SCI.

Aims: Astrocytes, activated by SCI with high proliferative capacity and proximity to neuronal lineage, are considered ideal cells for neuronal regeneration. As previous studies identified several small molecules for the induction of astrocyte-to-neuron, we confirmed that ginsenoside Rg1, a neuroprotective herb, could promote the direct transdifferentiation of astrocyte-to-neuron in rat.

Methods And Results: Immunofluorescence staining showed that 26.0 ± 1.5% of the induced cells exhibited less astroglial properties and more neuronal markers with typical neuronal morphologies, reflecting 20.6 ± 0.9% of cholinergic neurons and 22.3 ± 1.9% of dopaminergic neurons. Western blot and qRT-PCR revealed that the induced cells had better antiapoptotic ability and Rg1-promoted neuronal transdifferentiation of reactive astrocytes might take effect through suppressing Notch/Stat3 signal pathway. In vivo, a revised SCI model treated by Rg1 was confirmed with faster functional recovery and less injury lesion cavity.

Conclusion: In summary, our study provided a novel strategy of direct transdifferentiation of endogenous rat reactive astrocytes into neurons with Rg1 and promotion of neuronal regeneration after SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804042PMC
http://dx.doi.org/10.1111/cns.14000DOI Listing

Publication Analysis

Top Keywords

neuronal regeneration
12
ginsenoside rg1
8
neuronal
8
functional recovery
8
direct transdifferentiation
8
induced cells
8
reactive astrocytes
8
rg1 promotes
4
promotes astrocyte-to-neuron
4
transdifferentiation
4

Similar Publications

Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.

Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.

View Article and Find Full Text PDF

DANCR Knockdown Alleviates Neuroinflammation and Functional Recovery after Spinal Cord Injury via Regulating the ACTN4 / STAT3 Axis.

Arch Biochem Biophys

January 2025

Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:

Polarization of microglia following spinal cord injury (SCI) is a pivotal pathological process of secondary injury. Although differentiation antagonistic nonprotein coding RNA (DANCR) has been implicated in immune and inflammatory responses across various diseases, its role in SCI still unclear. This research aimed to clarify the underlying mechanisms of DANCR in SCI recovery by investigating its expression pattern in microglia.

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

Characterization of Mesenchymal and Neural Stem Cells Response to Bipolar Microsecond Electric Pulses Stimulation.

Int J Mol Sci

December 2024

Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy.

In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!