Parabens are a class of antimicrobial preservatives that are widely used in cosmetics, pharmaceuticals, and food products because of their ease of production, antimicrobial effect, and low price. The widespread use of these parabens, poses potential risks to human health. Therefore, it is necessary to establish a simple and rapid method for the detection of parabens. The large number of substrate interferences in complex samples is an important factor affecting the sensitivity of analytical methods. Magnetic solid-phase extraction (MSPE) has received much attention because of its advantages of easy operation, short extraction time, small sample amount, low cost, and environmental friendliness. Covalent organic frameworks (COFs) with high crystallinity, high specific surface area, adjustable pore size, regular porosity, as well as high chemical and thermal stability are now widely used in separation and analysis. Therefore, a sample pretreatment method combining MSPE and COF for the analysis of parabens in complex matrices is very promising. A magnetic covalent organic framework, FeO@TbBd, was successfully synthesized by the Schiff base reaction of 1,3,5-triformylbenzene (Tb) and benzidine (Bd) at room temperature using FeO nanoparticles as magnetic cores. Characterization by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) measurements, etc. revealed that the magnetic COF has high magnetic responsiveness, as well as good thermal and chemical stability, which make it an ideal adsorbent for the MSPE of parabens. Some factors related to the extraction efficiency, including the amount of adsorbent, extraction time, pH, desorption solvent, desorption time, and number of desorption were systematically investigated. A method involving MSPE and high performance liquid chromatography-ultraviolet detection (HPLC-UV) based on the FeO@TbBd was developed for the determination of four parabens (ethylparaben, propylparaben, butylparaben, and benzylparaben) in environmental water samples. Under the optimal extraction conditions, the method showed good linearities. The limits of detection and limits of quantification were 0.2-0.4 μg/L and 0.7-1.4 μg/L for the four analytes, respectively. The recoveries at three spiked levels were in the range of 86.1%-110.8% with intra-day and inter-day RSDs of less than 5.5% and 4.9%, respectively. The method was successfully applied to the determination of parabens in East Lake water, Yangtze water, and domestic wastewater. Ethyl paraben and propyl paraben were detected in domestic wastewater at the levels of 1.8 μg/L and 0.4 μg/L, respectively. The recoveries of the parabens at different spiked levels ranged from 80.7% to 117.5%, with RSDs of 0.2%-8.8%. The method has good potential for the determination of parabens in environmental water samples because of its operational simplicity, short extraction time, high sensitivity, and environmental friendliness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654616 | PMC |
http://dx.doi.org/10.3724/SP.J.1123.2022.06006 | DOI Listing |
Nanotechnology
January 2025
Anhui Agricultural University, Hefei, 230036, P. R. China, Hefei, 230036, CHINA.
Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane(PU)-based conductive fabric(GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.
View Article and Find Full Text PDFPLoS One
January 2025
School of Economics and Management, Northeastern Petroleum University, Daqing, China.
Energy and water are interlinked and inseparable resources of vital importance to the survival and development of human society. Exploring the relationship between energy and water is of great practical significance for the sustainable development of resources. The uneven regional distribution of energy and water in China has exacerbated energy-related water shortages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Economics, University of Oregon, Eugene, OR 97403.
The advent of herbicide-tolerant genetically modified (GM) crops spurred rapid and widespread use of the herbicide glyphosate throughout US agriculture. In the two decades following GM-seeds' introduction, the volume of glyphosate applied in the United States increased by more than 750%. Despite this breadth and scale, science and policy remain unresolved regarding the effects of glyphosate on human health.
View Article and Find Full Text PDFPLoS One
January 2025
Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.
Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!