Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ependymal cilia play pivotal roles in cerebrospinal fluid flow. In the primary culture system, undifferentiated glial cells differentiate well into ependymal multiciliated cells (MCCs) in the absence of fetal bovine serum (FBS). However, the substances included in FBS which inhibit this differentiation process have not been clarified yet. Here, we constructed the polarized primary culture system of ependymal cells using a permeable filter in which they retained ciliary movement. We found that transforming growth factor-β1 (TGF-β1) as well as Bone morphogenetic protein (BMP)-2 inhibited the differentiation with ciliary movement. The inhibition on the differentiation by FBS was recovered by the TGF-β1 and BMP-2 inhibitors in combination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.b22-00733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!