Purpose: To evaluate the feasibility of folded image training strategy (FITS) and the quality of images reconstructed using the improved model-based deep learning (iMoDL) network trained with FITS (FITS-iMoDL) for abdominal MR imaging.

Methods: This retrospective study included abdominal 3D T1-weighted images of 122 patients. In the experimental analyses, peak SNR (PSNR) and structure similarity index (SSIM) of images reconstructed with FITS-iMoDL were compared with those with the following reconstruction methods: conventional model-based deep learning (conv-MoDL), MoDL trained with FITS (FITS-MoDL), total variation regularized compressed sensing (CS), and parallel imaging (CG-SENSE). In the clinical analysis, SNR and image contrast were measured on the reference, FITS-iMoDL, and CS images. Three radiologists evaluated the image quality using a 5-point scale to determine the mean opinion score (MOS).

Results: The PSNR of FITS-iMoDL was significantly higher than that of FITS-MoDL, conv-MoDL, CS, and CG-SENSE (P < 0.001). The SSIM of FITS-iMoDL was significantly higher than those of the others (P < 0.001), except for FITS-MoDL (P = 0.056). In the clinical analysis, the SNR of FITS-iMoDL was significantly higher than that of the reference and CS (P < 0.0001). Image contrast was equivalent within an equivalence margin of 10% among these three image sets (P < 0.0001). MOS was significantly improved in FITS-iMoDL (P < 0.001) compared with CS images in terms of liver edge and vessels conspicuity, lesion depiction, artifacts, blurring, and overall image quality.

Conclusion: The proposed method, FITS-iMoDL, allowed a deeper MoDL reconstruction network without increasing memory consumption and improved image quality on abdominal 3D T1-weighted imaging compared with CS images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552667PMC
http://dx.doi.org/10.2463/mrms.mp.2021-0103DOI Listing

Publication Analysis

Top Keywords

model-based deep
12
deep learning
12
folded image
8
image training
8
training strategy
8
abdominal t1-weighted
8
images reconstructed
8
trained fits
8
learning reconstruction
4
reconstruction folded
4

Similar Publications

Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models.

View Article and Find Full Text PDF

Background: Based on explainable DenseNet model, the therapeutic effects of optimization nursing on patients with acute left heart failure (ALHF) and its application values were discussed.

Method: In this study, 96 patients with ALHF in the emergency department of the Affiliated Hospital of Xuzhou Medical University were selected. According to different nursing methods, they were divided into conventional group and optimization group.

View Article and Find Full Text PDF

TD-STrans: Tri-domain sparse-view CT reconstruction based on sparse transformer.

Comput Methods Programs Biomed

December 2024

Department of Information and Communication Engineering, North University of China, Taiyuan 030051, China; The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China. Electronic address:

Background And Objective: Sparse-view computed tomography (CT) speeds up scanning and reduces radiation exposure in medical diagnosis. However, when the projection views are severely under-sampled, deep learning-based reconstruction methods often suffer from over-smoothing of the reconstructed images due to the lack of high-frequency information. To address this issue, we introduce frequency domain information into the popular projection-image domain reconstruction, proposing a Tri-Domain sparse-view CT reconstruction model based on Sparse Transformer (TD-STrans).

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

To improve students' understanding of physical education teaching concepts and help teachers analyze students' cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image features related to teaching concepts using convolutional neural networks. Moreover, a neurocognitive diagnostic model based on hypergraph convolution is constructed to mine the data of students' long-term learning sequences and identify students' cognitive outcomes. The findings revealed that the highest accuracy of the association graph convolutional neural network was 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!