AI Article Synopsis

  • This study assesses the effectiveness of two methods—Hansen Solubility Parameters and R3m molecular descriptor— for predicting how different polymers work with various pharmaceuticals in solid dispersions.
  • It involves testing twelve combinations of APIs and polymers using techniques like differential scanning calorimetry and X-ray diffraction to analyze phase behavior.
  • While the Hansen method had some inaccuracies, particularly with certain combinations, the R3m method proved more reliable, suggesting that using both methods together could provide better insights based on the unique properties of the drug and polymer interactions.

Article Abstract

Evaluation of different amorphous solid dispersion carrier matrices is enabled by active pharmaceutical ingredient (API) structure-based predictions. This study compares the utility of Hansen Solubility Parameters with the R3m molecular descriptor for identifying dispersion polymers based on the structure of the drug molecule. Twelve API-polymer combinations (4 APIs and 3 interrelated polymers) were used to test each approach. Co-solidified mixtures containing 75% API were prepared by melt-quenching. Phase behavior was evaluated and classified using differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, and hot stage microscopy. Observations of dispersion behavior were compared to predictions made using the Hansen Solubility Parameter and R3m. The solubility parameter approach misclassified the dispersion behavior of 1 API-polymer combination and also did not produce definite predictions in 3 out of 12 of the API-polymer combinations. In contrast, R3m classifications of dispersion behavior were correct in all but two cases, with one misclassification and one ambiguous prediction. The solubility parameters best classify dispersion behavior when specific drug-polymer intermolecular interactions are present, but may be less useful otherwise. Ultimately, these two methods are most effectively used together, as they are based on distinct features of the same molecular structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2022.11.004DOI Listing

Publication Analysis

Top Keywords

dispersion behavior
16
solubility parameter
12
r3m molecular
8
molecular descriptor
8
hansen solubility
8
solubility parameters
8
api-polymer combinations
8
dispersion
7
solubility
5
behavior
5

Similar Publications

The capacity for a non-native species to become invasive largely hinges on existing dispersal capacity or adaptation of dispersal in new environments. Here we provide early evidence that invasive Northern Pike (Esox lucius), a Holarctic freshwater top predator, illegally introduced in the late 1950s into Southcentral Alaska, are now dispersing through estuarine corridors. This finding represents the first known documentation of estuary use and dispersal by Northern Pike in North America, exacerbating conservation concerns for already depressed populations of culturally and economically important species such as salmonids.

View Article and Find Full Text PDF

Effect of Monosaccharides Including Rare Sugars on the Bilayer Phase Behavior of Dimyristoylphosphatidylcholine.

Membranes (Basel)

December 2024

Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.

We observed bilayer phase transitions of dimyristoylphosphatidylcholine (DMPC) in aqueous solutions of four kinds of monosaccharides, namely, D-glucose, D-fructose, D-allose and D-psicose, using differential scanning calorimetry (DSC). D-allose (C3-epimer of D-glucose) and D-psicose (C3-epimer of D-fructose) are rare sugars. We performed DSC measurements using two types of sugar-containing sample dispersions of the DMPC vesicles: one is a normal sample dispersion with no concentration asymmetry between the inside and outside of the vesicles and the other is an unusual sample dispersion with a concentration asymmetry.

View Article and Find Full Text PDF

Development of Single-Walled Carbon Nanotube-Based Electrodes with Enhanced Dispersion and Electrochemical Properties for Blood Glucose Monitoring.

Biosensors (Basel)

December 2024

Department of Gyedang College of General Education, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea.

The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), specifically examining their dispersion behavior and electrochemical characteristics. By using ultrasonic waves, we analyzed the dispersion of CNTs in various solvents, including N, N-dimethylformamide (DMF), deionized water (DW), ethanol, and acetone.

View Article and Find Full Text PDF

"Chasing Rainbows" Beyond Kaposi Sarcoma's Dermoscopy: A Mini-Review.

Dermatopathology (Basel)

November 2024

Second Dermatology Department, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

The dermoscopic rainbow pattern (RP), also known as polychromatic pattern, is characterized by a multicolored appearance, resulting from the dispersion of polarized light as it penetrates various tissue components. Its separation into different wavelengths occurs according to the physics principles of scattering, absorption, and interference of light, creating the optical effect of RP. Even though the RP is regarded as a highly specific dermoscopic indicator of Kaposi's sarcoma, in the medical literature, it has also been documented as an atypical dermoscopic finding of other non-Kaposi skin entities.

View Article and Find Full Text PDF

During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and the behavior of low temperature gelation. As a coarse dispersion system, water-based drilling fluid has a complex composition of dispersed phase and dispersing medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!