Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Relatively large band-gap, fast charge carriers recombination, and mono-functionality of photocatalytic materials are still representing stumbling hurdles against their optimal usage for water cleaning. Herein, a novel black titanium oxide/plasmonic titanium nitride@activated coconut biochar (TiO/TiN@ACB) composite was designed to have both photocatalytic and photothermal functions. Intermediate states of black TiO, plasmonic effect of TiN, and high electrons (e) capacity of biochar enhanced band-gap narrowing, light absorbance extension, and charge carriers separation respectively. Black TiO and plasmonic TiN sensitization via visible/infrared (Vis/IR) portion of photonic spectrum in addition to the confirmed close contact of composite constituents explained the demonstrated major role of e in photocatalytic mechanism through efficient excitation and facile transfer. Thanks to black photocatalytic semiconductor and carbonic materials for their ultimate photons harnessing and efficient photothermal conversion where the composite exhibited a remarkable photothermal water evaporation upon Vis/IR illumination as well. TiO/TiN@ACB composite revealed 92.8 and 89.7% photocatalytic reduction of hexavalent chromium (Cr(VI)) and water evaporation efficiencies up to 92.9 and 51.1% upon IR and Vis light illumination respectively. This study proposes a new approach for efficient water cleaning by coupling of oxygen deficient and plasmonic semiconductors supported on naturally derived carbonic material as a broad spectrum harvester and bi-functional photocatalytic and photothermal material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.137137 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!