Bacterial type IV secretion systems (T4SSs) are the specific devices that mediate the dissemination of antibiotic resistant genes via horizontal gene transfer (HGT). Multi-drug-resistant Enterococcus faecalis (E. faecalis) represents a clinical public health threat because of its transferable plasmid with a functional plasmid-encoded (PE)-T4SS. Here, we report a chromosome-encoded (CE)-T4SS that exists in 40% of E. faecalis isolates. Compared with the PE-T4SS, CE-T4SS displays distinct characteristics in protein architecture and is capable of mediating large and genome-wide gene transfer in an imprecise manner. Reciprocal exchange of CE-T4SS- or PE-T4SS-associated origin of transfer (oriT) could disrupt HGT function, indicating that CE-T4SS is an independent system compared with PE-T4SS. Taken together, the CE-T4SS sheds light on the knowledge of HGT in gram-positive bacteria and triggers us to explore more evolutionary mechanisms in E. faecalis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2022.111609 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!