In MALDI TOF MS analysis, complicated mass spectra can usually be recorded for polymers with high affinities to protons and alkali metal ions. For these polymers, protonated ions and sodium and potassium adducts can often be formed concomitantly. By distributing these ions into three separate spectra of protonated ions, sodium adducts, and potassium adducts, significantly simplified spectra can be acquired. Mass spectra consisting of only sodium or potassium adducts can often be obtained by simply adding sodium salt and potassium salt, respectively. We report here a method to selectively generate protonated ions. A polyethylene glycol (PEG) sample with amino end groups was selected as the model polymer and α-cyano-4-hydroxycinnamic acid (CHCA) as the matrix. Octadecylamine (ODA) or a mixture of a tetrabutylammonium (TBA) salt and an ammonium salt was used as the co-matrix to inhibit the release of sodium and potassium ions and their related adducts into the MALDI gas phase plume. By depositing the polymer sample on top of a preloaded layer of CHCA with a co-matrix, the generation of Na and K adducts is suppressed, while [ODA + H] and NH released from the preloaded matrix layer can serve as protonation reagents to protonate the polymer molecules via proton transfer reactions. It is clearly demonstrated that disentangling a complex mass spectrum filled densely with various series of ions into three separate spectra, with each one consisting of only one type of ions, allows unambiguous identification of mass peaks and greatly helps the interpretation of MS results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732877 | PMC |
http://dx.doi.org/10.1021/jasms.2c00250 | DOI Listing |
Photosynth Res
January 2025
Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, CHINA.
Electrolysis of carbon dioxide (CO2) in acid offers a promising route to overcome CO2 loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO2 to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO2 activation and HER suppression.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, 110016, India.
Crystalline γ-FeO(OH) dominantly possessing ─OH terminals (𝛾-FeO(OH)), polycrystalline γ-FeO(OH) containing multiple ─O, ─OH, and Fe terminals (𝛾-FeO(OH)), and α-FeO majorly containing ─O surface terminals are used as electrocatalysts to study the effect of surface terminals on electrocatalytic nitrate reduction reaction (eNORR) selectivity and stabilization of reaction intermediates. Brunauer-Emmett-Teller analysis and electrochemically determined surface area suggest a high active surface area of 117.79 m g (ECSA: 0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, 522237, India.
CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. Electronic address:
A zinc(II) coordination polymer, [Zn(Hdhtp)(2,2'-bpy)(HO)] (1), has been utilized as a dual-mode luminescence-colorimetric sensor (Hdhtp = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in Hdhtp can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!