Topological superconductivity (TSC) has drawn much attention for its fundamental interest and application in quantum computation. An outstanding challenge is the lack of intrinsic TSC materials with a -wave pairing gap, which has led to the development of an effective -wave theory of coupling -wave gap with Rashba spin-orbit coupling (RSOC). However, the RSOC-strict mechanism and materials pose still both fundamental and practical limitations. Here, we generalize this theory to antisymmetric SOC (ASOC). Using perturbation theory, we demonstrate that 2D crystals, with point groups of , , , , , , , , , , or , can all facilitate the desired ASOC. Remarkably, this enables us to discover 314 TSC candidates by screening 2D material databases, which are further confirmed by first-principles calculations of Majorana boundary modes and the topological invariant of the superconducting gap. Our work fundamentally enriches TSC theory and greatly expands the classes of TSC materials for experimental exploration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c03213 | DOI Listing |
Adv Mater
January 2025
CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
Adv Mater
January 2025
Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.
Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.
Phys Rev Lett
December 2024
Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Multiterminal Josephson junctions (MTJJs), devices in which a normal metal is in contact with three or more superconducting leads, have been proposed as artificial analogs of topological crystals. The topological nature of MTJJs manifests as a modulation of the quasiparticle density of states (DOS) in the normal metal that may be probed by tunneling measurements. We show that one can reveal this modulation by measuring the resistance of diffusive MTJJs with normal contacts, which shows rich structure as a function of the phase differences {ϕ_{i}}.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia.
Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!