Nonadiabatic Dynamics of 1,3-Cyclohexadiene by Curvature-Driven Coherent Switching with Decay of Mixing.

J Chem Theory Comput

Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.

Published: December 2022

The photoinduced ring-opening reaction of 1,3-cyclohexadiene to produce 1,3,5-hexatriene is a classic electrocyclic reaction and is also a prototype for many reactions of biological and synthetic importance. Here, we simulate the ultrafast nonadiabatic dynamics of the reaction in the manifold of the three lowest valence electronic states by using extended multistate complete-active-space second-order perturbation theory (XMS-CASPT2) combined with the curvature-driven coherent switching with decay of mixing (κCSDM) dynamical method. We obtain an excited-state lifetime of 79 fs, and a product quantum yield of 40% from the 500 trajectories initiated in the S excited state. The obtained lifetime and quantum yield values are very close to previously reported experimental and computed values, showing the capability of performing a reasonable nonadiabatic ring-opening dynamics with the κCSDM method that does not require nonadiabatic coupling vectors, time derivatives, or diabatization. In addition, we study the ring-opening reaction by initiating the trajectories in the dark state S. We also optimize the S/S and S/S minimum-energy conical intersections (MECIs) by XMS-CASPT2; for S/S, we optimized both an inner and an outer local-minimum-energy conical intersections (LMECIs). We provide the potential energy profile along the ring-opening coordinate by joining selected critical points via linear synchronous transit paths. We find the inner S/S LMECI to be more crucial than the outer one.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.2c00801DOI Listing

Publication Analysis

Top Keywords

nonadiabatic dynamics
8
curvature-driven coherent
8
coherent switching
8
switching decay
8
decay mixing
8
ring-opening reaction
8
quantum yield
8
conical intersections
8
nonadiabatic
4
dynamics 13-cyclohexadiene
4

Similar Publications

This study probes the vibronic interactions in the photoelectron spectra of CAlGe, exploring its six excited electronic states through an approach that combines the electronic structure calculations and the quantum nuclear dynamics. Central to this investigation is utilizing a model diabatic Hamiltonian, which allows for the exact evaluation of Hamiltonian parameters and fitting potential energy cuts (PECs). Notably, the analysis of these PECs uncovers pronounced nonadiabatic effects within the photoelectron spectra, emphasized by the presence of multiple conical intersections.

View Article and Find Full Text PDF

Schottky Defects Suppress Nonradiative Recombination in CHNHPbI through Charge Localization.

J Phys Chem Lett

December 2024

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.

Hybrid lead halide perovskites are promising materials for photovoltaic applications due to their exceptional optoelectronic properties. Here, we investigate the impact of Schottky defects─specifically PbI(V) and CHNHI (V) vacancies─on nonradiative recombination in CHNHPbI using time-dependent density functional theory and nonadiabatic (NA) molecular dynamics. Our results reveal that Schottky defects do not alter the fundamental bandgap or introduce trap states but instead distort the surrounding lattice, localizing the hole distribution.

View Article and Find Full Text PDF

We demonstrate that working with a correct phase-space electronic Hamiltonian captures electronic inertial effects. In particular, we show that phase space surface hopping dynamics do not suffer (at least to very high order) from non-physical non-adiabatic transitions between electronic eigenstates during the course of pure nuclear translational and rotational motion. This work opens up many new avenues for quantitatively investigating complex phenomena, including angular momentum transfer between chiral phonons and electrons as well as chiral-induced spin selectivity effects.

View Article and Find Full Text PDF

Recent developments in quantum computing are highly promising, particularly in the realm of quantum chemistry. Due to the noisy nature of currently available quantum hardware, hybrid quantum-classical algorithms have emerged as a reliable option for near-term simulations. Mixed quantum-classical dynamics methods effectively capture nonadiabatic effects by integrating classical nuclear dynamics with quantum chemical computations of the electronic properties.

View Article and Find Full Text PDF

Tuning Electronic Relaxation of Nanorings Through Their Interlocking.

J Comput Chem

January 2025

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina.

Electronic and vibrational relaxation processes can be optimized and tuned by introducing alternative pathways that channel excess energy more efficiently. An ensemble of interacting molecular systems can help overcome the bottlenecks caused by large energy gaps between intermediate excited states involved in the relaxation process. By employing this strategy, catenanes composed of mechanically interlocked carbon nanostructures show great promise as new materials for achieving higher efficiencies in electronic devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!