Genetic manipulation of Bacillus spp., such as B. thuringiensis and B. cereus, is laborious and time consuming due to challenges in transformation of the plasmid DNA construct. Larger shuttle plasmids, such as pMAD, that are commonly used in markerless gene replacement are particularly difficult to transform into Bacillus spp. Here, we present robust protocols that work efficiently for the transformation of both small and large plasmid constructs into B. thuringiensis. Our protocols involve preparation of efficient electrocompetent Bacillus cells by cultivating the cells in the presence of a cell wall-weakening agent, followed by washing the cells with optimized solutions. The protocols further highlight the importance of using unmethylated plasmid DNA for the efficient transformation of B. thuringiensis. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of electrocompetent B. thuringiensis Basic Protocol 2: Transformation of B. thuringiensis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cpz1.588 | DOI Listing |
Probiotics Antimicrob Proteins
December 2024
Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
This paper provides a comprehensive review of antimicrobial peptides (AMPs) derived from Bacillus spp. The classification and structure of Bacillus-derived AMPs encompass a diverse range. There are 89 documented Bacillus-derived AMPs, which exhibit varied sources, amino acid sequences, and molecular structures.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Plant Breeding & Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
Background: Tomato (Solanum lycopersicum L) is affected by various diseases among which Orthotospovirus arachinecrosis cause huge economical loss to the farmers. Management of viral diseases using systemic insecticides will target the beneficial microflora and fauna besides polluting the environment and cause health hazards. In this context, inducing systemic resistance (ISR) through Bacillus spp.
View Article and Find Full Text PDFMetabolites
November 2024
Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China.
Plant growth-promoting rhizobacteria (PGPR), particularly spp., are pivotal in enhancing plant defense mechanisms against pathogens. This study aims to investigate the metabolic reprogramming of pine needles induced by csuftcsp75 in response to the pathogen P9, evaluating its potential as a sustainable biocontrol agent.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, Nanyang 473061, China.
The coexistence of microplastics and heavy metals in soil can lead to more intricate environmental effects. While plant growth-promoting bacteria have been widely recognized for enhancing the remediation of heavy metal-contaminated soils, little research has been conducted to investigate whether they can alleviate the stress of microplastic-heavy metal composite contamination on plants. We investigated the effects of isolated and screened plant growth-promoting bacteria on the growth and cadmium (Cd) accumulation of under the composite pollution of Cd and polypropylene (PP) with different particle sizes (6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!