Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.14263DOI Listing

Publication Analysis

Top Keywords

bi-allelic missense
4
missense change
4
change c638a > g
4
c638a > g matrix
4
matrix metalloproteinase
4
metalloproteinase patient
4
patient progressive
4
progressive familial
4
familial intrahepatic
4
intrahepatic cholestasis
4

Similar Publications

Genetic Heterogeneity in Four Probands Reveals , , and Related Neurodevelopmental Disorders.

Biomedicines

November 2024

Translational Genomics Laboratory, Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan.

: Neurodevelopmental disorders of genetic etiology are a highly diverse set of congenital recurrent complications triggered by irregularities in the basic tenets of brain development. : We present whole exome sequencing analysis and expression characteristics of the probands from four unrelated Pakistani consanguineous families with facial dysmorphism, neurodevelopmental, ophthalmic, auditory, verbal, psychiatric, behavioral, dental, and skeletal manifestations otherwise unexplained by clinical spectrum. : Whole exome sequencing identifies a novel, bi-allelic, missense variant in the gene [NM_152419.

View Article and Find Full Text PDF

Bi-allelic variants in DAP3 result in reduced assembly of the mitoribosomal small subunit with altered apoptosis and a Perrault-syndrome-spectrum phenotype.

Am J Hum Genet

January 2025

Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK. Electronic address:

The mitochondrial ribosome (mitoribosome) synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA, and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders and frequently show combined oxidative phosphorylation deficiency.

View Article and Find Full Text PDF

Anterior gradient 2 (AGR2) is a protein disulfide isomerase that is important for protein processing in the endoplasmic reticulum and is essential for mucin production in the digestive and respiratory tracts. Bi-allelic AGR2 variants were recently found to cause recurrent respiratory infections and failure to thrive with or without diarrhea (RIFTD; MIM # 620233), although the mechanisms behind this condition remain unclear. To date, at least 15 patients with homozygous AGR2 variants have been reported.

View Article and Find Full Text PDF

Expanding clinical spectrum of PAICS deficiency: Comprehensive analysis of two sibling cases.

Eur J Hum Genet

November 2024

Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.

De novo synthesis of purines (DNPS) is a biochemical pathway that provides the purine bases for synthesis of essential biomolecules such as nucleic acids, energy transfer molecules, signaling molecules and various cofactors. Inborn errors of DNPS enzymes present with a wide spectrum of neurodevelopmental and neuromuscular abnormalities and accumulation of characteristic metabolic intermediates of the DNPS in body fluids and tissues. In this study, we present the second case of PAICS deficiency due to bi-allelic variants of PAICS gene encoding for a missense p.

View Article and Find Full Text PDF

Novel bi-allelic DNAH3 variants cause oligoasthenoteratozoospermia.

Front Endocrinol (Lausanne)

November 2024

Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Background: Oligoasthenoteratozoospermia (OAT) is a widespread cause of male infertility. One of the usual clinical manifestations of OAT is multiple morphological abnormalities of the sperm flagella (MMAF), which are frequently associated with mutations and defects in the dynein family. However, the relationship between the newly identified Dynein Axonemal Heavy Chain 3 (DNAH3) mutation and oligonasthenospermia in humans has not yet been established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!