Background: In Magnetic Resonance-Linac (MR-Linac) dosimetry formalisms, a new correction factor, k , has been introduced to account for corresponding changes to detector readings under the beam quality, Q, and the presence of magnetic field, B.

Purpose: This study aims to develop and implement a Monte Carlo (MC)-based framework for the determination of k correction factors for a series of ionization chambers utilized for dosimetry protocols and dosimetric quality assurance checks in clinical 1.5 T MR-Linacs. Their dependencies on irradiation setup conditions are also investigated. Moreover, to evaluate the suitability of solid phantoms for dosimetry checks and end-to-end tests, changes to the detector readings due to the presence of small asymmetrical air gaps around the detector's tip are quantified.

Methods: Phase space files for three irradiation fields of the ELEKTA Unity 1.5 T/7 MV flattening-filter-free MR-Linac were provided by the manufacturer and used as source models throughout this study. Twelve ionization chambers (three farmer-type and nine small-cavity detectors, from three manufacturers) were modeled (including their dead volume) using the EGSnrc MC code package. k values were calculated for the 10 × 10 cm irradiation field and for four cardinal orientations of the detectors' axes with respect to the 1.5 T magnetic field. Potential dependencies of k values with respect to field size, depth, and phantom material were investigated by performing additional simulations. Changes to the detectors' readings due to the presence of small asymmetrical air gaps (0.1 up to 1 mm) around the chambers' sensitive volume in an RW3 solid phantom were quantified for three small-cavity chambers and two orientations.

Results: For both parallel (to the magnetic field) orientations, k values were found close to unity. The maximum correction needed was 1.1%. For each detector studied, the k values calculated for the two parallel orientations agreed within uncertainties. Larger corrections (up to 5%) were calculated when the detectors were oriented perpendicularly to the magnetic field. Results were compared with corresponding ones found in the literature, wherever available. No considerable dependence of k with respect to field size (down to 3 × 3 cm ), depth, or phantom material was noticed, for the detectors investigated. As compared to the perpendicular one, in the parallel to the magnetic field orientation, the air gap effect is minimized but is still considerable even for the smallest air gap considered (0.1 mm).

Conclusion: For the 10 × 10 cm field, magnetic field correction factors for 12 ionization chambers and four orientations were determined. For each detector, the k value may be also applied for dosimetry procedures under different irradiation parameters provided that the orientation is taken into account. Moreover, if solid phantoms are used, even the smallest asymmetrical air gap may still bias small-cavity chamber response. This work substantially expands the availability and applicability of k correction factors that are detector- and orientation-specific, enabling more options in MR-Linac dosimetry checks, end-to-end tests, and quality assurance protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.16082DOI Listing

Publication Analysis

Top Keywords

magnetic field
28
correction factors
16
air gap
16
ionization chambers
12
asymmetrical air
12
field
11
15 t mr-linacs
8
monte carlo
8
magnetic
8
field correction
8

Similar Publications

This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°.

View Article and Find Full Text PDF

Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions.

Sensors (Basel)

December 2024

Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada.

The epidural injection is a medical intervention to inject therapeutics directly into the vicinity of the spinal cord for pain management. Because of its proximity to the spinal cord, imprecise insertion of the needle may result in irreversible damage to the nerves or spinal cord. This study explores enhancing procedural accuracy by integrating a telerobotic system and augmented reality (AR) assistance.

View Article and Find Full Text PDF

This study investigates the effect of microstructural changes in polyurethane coatings on their water resistance properties. Polyurethane coatings with varying diluent contents were prepared and tested for water penetration resistance and mechanical property retention. The time-dependent behavior of water within the coatings at different immersion durations was analyzed using low-field nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

The cleanliness of lubricating oil plays a key role in determining the operational health of mechanical systems, serving as a critical metric that delineates the extent of equipment wear. In this study, we present a magnetic-core-type planar coil particle detection sensor. The detection accuracy and detection limit are improved by optimizing the magnetic field inside the sensor.

View Article and Find Full Text PDF

The rapid development of wireless power transfer (WPT) technology has provided new avenues for supplying continuous and stable power to capsule robots. In this article, we propose a two-dimensional omnidirectional wireless power transfer (OWPT) system, which enables power to be transmitted effectively in multiple spatial directions. This system features a three-dimensional transmitting structure with a Helmholtz coil and saddle coil pairs, combined with a one-dimensional receiving structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!