The adoption of new synthesis strategy and monomers significantly promotes the construction of porous organic polymers (POPs) and their promising applications. A fabricating method of porous polyimides is developed via sequential imidization and cross-linking reaction among self-condensable building blocks, as reported in the authors' previous manuscript. Herein, porous polyureas (A-POPs) are prepared starting from 4-ethynylaniline and diisocyanate monomers, while porous polyamides (B-POPs) are synthesized from 4-ethynylbenzoic acid and diisocyanate monomers. It is found that decreasing the monomer content in solvent can effectively inhibit the premature phase separation and facilitate the evolution of integrated network. Eventually, a maximum surface area of 425 m  g is achieved for porous polyureas when the content of monomers is 10%. To the best knowledge, A-POPs are the porous polyureas with the highest surface areas reported up to now. The as-prepared porous polyurea (AN-POP) exhibits the maximum adsorption capacity of 1093.87 ± 5.23 mg g and removal rate of 99.96% for Au(III), due to its high surface area and the coordination between the heteroatoms (N and O) in A-POPs and metal ions. Besides, the porous polyurea also exhibits excellent renewable efficiency and high selectivity to Au(III).

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202200712DOI Listing

Publication Analysis

Top Keywords

porous polyureas
16
construction porous
8
porous
8
diisocyanate monomers
8
surface area
8
porous polyurea
8
polyureas
4
polyureas polyamides
4
polyamides domino
4
domino polymerization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!