The metabolism of monoterpene indole alkaloids (MIAs) is an outstanding example of how plants shape chemical diversity from a single precursor. Here we report the discovery of novel enzymes from the tree, a cytochrome P450, an NADPH dependent oxidoreductase and a BAHD acyltransferase that together synthesize the indole alkaloid akuammiline with a unique methanoquinolizidine cage structure. The two paralogous cytochrome P450 enzymes rhazimal synthase (AsRHS) and geissoschizine oxidase (AsGO) catalyse the cyclization of the common precursor geissoschizine and they direct the MIA metabolism towards to the two structurally distinct and medicinally important MIA classes of and alkaloids, respectively. To understand the pathway divergence, we investigated the catalytic mechanism of the two P450 enzymes by homology modelling and reciprocal mutations. Upon conducting mutant enzyme assays, we identified a single amino acid residue that mediates the space in active sites, switches the enzymatic reaction outcome and impacts the cyclization regioselectivity. Our results represent a significant advance in MIA metabolism, paving the way for discovery of downstream genes in alkaloid biosynthesis and facilitating future synthetic biology applications. We anticipate that our work presents, for the first time, insights at the molecular level for plant P450 catalytic activity with a significant key role in the diversification of alkaloid metabolism, and provides the basis for designing new drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628931 | PMC |
http://dx.doi.org/10.1039/d2sc03612f | DOI Listing |
Org Lett
January 2025
School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
An unprecedented synergistic copper- and amine-catalyzed cyclization of enynone is reported. This reaction features an efficient and straightforward construction of multisubstituted tetralone through an amine-assisted regioselective oxygen atom transfer process and stereoselective intramolecular Michael addition cyclization. Under dehydrative reaction conditions, the synthesis of tetrahydronaphthylimine derivatives with ketone group tolerance is achieved, which could be challenging via traditional methods.
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
A novel regioselective manganese(III)-mediated radical cascade cyclization of N-propargyl enamides with various H-phosphine oxides, H-phosphinates and H-phosphonates was developed. Mechanistic studies show that the reaction is mainly composed of the selective addition of phosphonyl radical to C≡C bond and the intramolecular 6--trig cyclization of vinyl radical. Utilizing this protocol, we successfully synthesized a diverse range of 3-phosphorylpyridines in high efficiency with good functional group compatibility and simple operation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB, Canada.
Base-stabilized rhodium borylene complex κ-L(CO)Rh(BMes), 2; κ-L=κ-NN'-Rh,κ-N-B-(2,5-[PrP=N(4-PrCH)]-N'(CH)); Mes=mesityl, reacts with a series of alkynes (PhC≡C-R; R=Ph, Me, COEt, H) to yield unique structures whereby the alkyne has regioselectively added across boron and the carbon atom of a CO ligand. The resulting complexes, LRh[C(O)C(Ph)C(R)B(Mes)], 3, react with additional CO to afford cycle-containing products, L(CO)Rh ), 5, that ultimately release highly functionalized organic heterocycles of the form =NPipp (Pipp=4-PrCH), 6. These oxaboroles, which were assembled from a primary hydroborane, CO, an alkyne, and an azide-generated NPipp, are structurally analogous to two of the five boron-containing therapeutics approved by the FDA.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
Herein, we present an unprecedented electrochemical reductive cyclizative carboxylation of -vinylphenyl isocyanides with carbon dioxide achieved without the use of metal catalysts. This protocol demonstrates a broad substrate scope and good functional group tolerance, facilitating the rapid assembly of 2-oxoindolin-3-acetic acids in good to high yields with excellent regioselectivity. Furthermore, these structural motifs may have potential applications in formal synthesis of bioactive natural products.
View Article and Find Full Text PDFOrg Lett
January 2025
Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
This work describes a chiral bifunctional squaramide/DBU sequential catalytic strategy for the enantioselective synthesis of nonfused chiral eight-membered O-heterocycles through the asymmetric addition of ynones to β,γ-unsaturated α-ketoesters followed by the regio- and diastereoselective cyclization of the adduct intermediates. Mechanistic experiments revealed that an isomerization process should be involved in the ring formation step, and the origin of the high regioselectivity and diastereoselectivity has also been elucidated by the DFT calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!