Objective: In the field of graph theory, maple is a technical computation form that is used for solving problems. In this article, we apply maple to find the strong fuzzy chromatic polynomial of fuzzy graphs and related. Moreover, we apply maple to obtain strong fuzzy chromatic numbers of fuzzy graphs using their strong fuzzy chromatic polynomials.

Results: The strong fuzzy chromatic polynomials for fuzzy graphs, strong fuzzy graphs and complete fuzzy graphs are determined using maple. Furthermore, the strong fuzzy chromatic numbers for the fuzzy graphs are obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644620PMC
http://dx.doi.org/10.1186/s13104-022-06242-6DOI Listing

Publication Analysis

Top Keywords

strong fuzzy
28
fuzzy graphs
28
fuzzy chromatic
24
fuzzy
13
chromatic polynomial
8
polynomial fuzzy
8
apply maple
8
maple strong
8
chromatic numbers
8
numbers fuzzy
8

Similar Publications

Drug discovery and development is a challenging and time-consuming process. Laboratory experiments conducted on Vidarabine showed IC 6.97 µg∕mL, 25.

View Article and Find Full Text PDF

Acid-Base Equilibrium of 5,5,6-Trihydroxy-6-Methyldihydropyrimidine-2,4(1,3)-Dione in the Gas Phase and in Water.

J Phys Chem A

January 2025

Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Laboratory of Physicochemical Methods of Analysis, 69 Prospekt Oktyabrya, Ufa 450054, Russian Federation.

The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1,3)-dione was studied for the first time in aqueous solutions. Its constant (pK = 9.23 ± 0.

View Article and Find Full Text PDF

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

Adaptability evaluation model and experiment of full section SBM in deep strata based on AHP-fuzzy theory.

Sci Rep

January 2025

State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Huainan, 232001, Anhui, China.

To delve into the adaptability of the full section SBM boring process during its inaugural application, this paper innovatively put forward an adaptability evaluation model for the SBM shaft boring within composite deep strata. This model is with the degree of adaptability T as the quantitative criterion. Initially, the evaluation index system of SBM boring adaptability is established.

View Article and Find Full Text PDF

Wireless sensor networks (WSNs) are imperative to a huge range of packages, along with environmental monitoring, healthcare structures, army surveillance, and smart infrastructure, however they're faced with numerous demanding situations that impede their functionality, including confined strength sources, routing inefficiencies, security vulnerabilities, excessive latency, and the important requirement to keep Quality of Service (QoS). Conventional strategies generally goal particular troubles, like strength optimization or improving QoS, frequently failing to provide a holistic answer that effectively balances more than one crucial elements concurrently. To deal with those challenges, we advocate a novel routing framework that is both steady and power-efficient, leveraging an Improved Type-2 Fuzzy Logic System (IT2FLS) optimized by means of the Reptile Search Algorithm (RSA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!