Fat storage-inducing transmembrane proteins (FITMs) were initially identified in 2007 as members of a conserved endoplasmic reticulum (ER) resident transmembrane protein gene family, and were found to be involved in lipid droplet (LD) formation. Recently, several studies have further demonstrated that the ability of FITMs to directly bind to triglyceride and diacylglycerol, and the diphosphatase activity of hydrolyzing fatty acyl-CoA, might enable FITMs to maintain the formation of lipid droplets, engage in lipid metabolism, and protect against cellular stress. Based on the distribution of FITMs in tissues and their important roles in lipid droplet biology and lipid metabolism, it was discovered that FITMs were closely related to muscle development, adipocyte differentiation, and energy metabolism. Accordingly, the abnormal expression of FITMs was not only associated with type 2 diabetes and lipodystrophy, but also with cardiac disease and several types of cancer. This study reviews the structure, distribution, expression regulation, and functionality of FITMs and their potential relationships with various metabolic diseases, hoping to provide inspiration for fruitful research directions and applications of FITM proteins. Moreover, this review will provide an important theoretical basis for the application of FITMs in the diagnosis and treatment of related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644577 | PMC |
http://dx.doi.org/10.1186/s11658-022-00391-z | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmacology, Faculty of Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania.
Background: Lipid vesicles, especially those utilizing biocompatible materials like chitosan (CHIT), hold significant promise for enhancing the stability and release characteristics of drugs such as indomethacin (IND), effectively overcoming the drawbacks associated with conventional drug formulations.
Objectives: This study seeks to develop and characterize novel lipid vesicles composed of phosphatidylcholine and CHIT that encapsulate indomethacin (IND-ves), as well as to evaluate their in vitro hemocompatibility.
Methods: The systems encapsulating IND were prepared using a molecular droplet self-assembly technique, involving the dissolution of lipids, cholesterol, and indomethacin in ethanol, followed by sonication and the gradual incorporation of a CHIT solution to form stable vesicular structures.
Nutrients
December 2024
Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway.
Background: Obesity and related metabolic disorders have reached epidemic levels, calling for diverse therapeutic strategies. Altering nutrient intake, timing and quantity by intermittent fasting seems to elicit beneficial health effects by modulating endocrine and cell signaling networks. This study explores the impact of cyclic nutrient availability in the form of every-other-day fasting (EODF) on human adipose stem cells (ASCs).
View Article and Find Full Text PDFMolecules
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China.
Lipid droplets (LDs), once regarded as inert fat particles, have been ignored by scientific researchers for a long time. Now, studies have shown that LDs are dynamic organelles used to store neutral lipids in cells and maintain cell stability. The abnormality of intracellular LDs usually causes metabolic disorders in the body, such as obesity, atherosclerosis, diabetes, and cancer, so the LDs have attracted wide attention.
View Article and Find Full Text PDFCells
December 2024
Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy.
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including visceral obesity, dyslipidemia, and insulin resistance. In this regard, visceral white adipose tissue (vWAT) plays a critical role, influencing energy metabolism, immunomodulation, and oxidative stress. Adipose-derived stem cells (ADSCs) are key players in these processes within vWAT.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Science and Engineering, College of Food Science and Engineering, Bohai University, Jinzhou 121013, China.
The objective of this study was to examine the hypolipidemic effect and potential mechanism of action of green radish polysaccharide (GRP) in hyperlipidemic mice. We found that in mice fed a high-fat diet, supplementing with GRP reduced body weight and liver index, significantly improved serum lipid levels and markers of liver damage, and mitigated oxidative stress and inflammation. Mechanistically, in these hyperlipidemic mice, the size of fat cells was reduced by GRP, and the abnormal accumulation of lipid droplets was reduced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!