Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Realtime and remote monitoring of neonatal vital signs is a crucial part of providing appropriate care in neonatal intensive care units (NICU) to reduce mortality and morbidity of newborns. In this study, a new approach, a device for remote and real-time monitoring of neonatal vital signs (DRRMNVS) in the neonatal intensive care unit using the internet of things (IoT), was proposed. The system integrates four vital signs: oxygen saturation, pulse rate, body temperature and respiration rate for continuous monitoring using the Blynk app and ThingSpeak IoT platforms.
Methods: The Wemos D1 mini, a Wi-Fi microcontroller, was used to acquire the four biological biomarkers from sensors, process them and display the result on an OLED display for point of care monitoring and on the Blynk app and ThingSpeak for remote and continuous monitoring of vital signs. The Bland-Altman test was employed to test the agreement of DRRMNVS measurement with reference standards by taking measurements from ten healthy adults.
Results: The prototype of the proposed device was successfully developed and tested. Bias [limits of agreement] were: Oxygen saturation (SpO2): -0.1 [- 1.546 to + 1.346] %; pulse rate: -0.3 [- 2.159 to + 1.559] bpm; respiratory rate: -0.7 [- 0.247 to + 1.647] breaths/min; temperature: 0.21 [+ 0.015˚C to + 0.405˚C] ˚C. The proof-of-concept prototype was developed for $33.19.
Conclusion: The developed DRRMNVS device was cheap and had acceptable measurement accuracy of vital signs in a controlled environment. The system has the potential to advance healthcare service delivery for neonates with further development from this proof-of-concept level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10877-022-00929-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!