Quiescence is a vital cellular state where cells can reversibly exit the cell cycle and cease proliferation in unfavourable conditions. Cells can undergo multiple transitions in and out of quiescence during their lifetime, and an imbalance in this highly regulated process can promote tumorigenesis and disease. The nucleus experiences vast changes during entry to quiescence, including changes in gene expression and a reduction in size due to increased chromatin compaction. Studies into these changes have highlighted the importance of a core quiescence gene expression programme, reorganisation of nuclear structures, and the action of the condensin complex in creating a stable, quiescent nucleus. However, the underpinning mechanisms behind the formation of a quiescent nucleus are still not fully understood. This chapter explores the current literature surrounding chromatin dynamics during entry to quiescence and the association between quiescence and disease and accentuates the need for further studies to understand this transition. Linking failure to maintain a stable, quiescent state with potential genome instability may help in the advancement of medical interventions for a range of diseases, including cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-06573-6_9DOI Listing

Publication Analysis

Top Keywords

entry quiescence
12
chromatin dynamics
8
dynamics entry
8
gene expression
8
stable quiescent
8
quiescent nucleus
8
quiescence
7
quiescence compromised
4
compromised functionality
4
functionality cancer
4

Similar Publications

Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress.

View Article and Find Full Text PDF

Quiescence in is a reversible G crucial for long-term survival under nutrient-deprived conditions. During quiescence, the genome is hypoacetylated and chromatin undergoes significant compaction. However, the 3D structure of the ribosomal DNA (rDNA) locus in this state is not well understood.

View Article and Find Full Text PDF

Salinity and flooding are two major production impediments affecting rice cultivation in coastal agro-ecosystems. We investigated how rice plants use two contrasting strategies such as energy conservation (for submergence tolerance) and energy expenditure (for ion exclusion) to adapt to the combined stresses of saline water submergence (SWS). Pot and hydroponic experiments were conducted using four selected rice genotypes carrying Sub1 (Submergence1) and/or Saltol (Salinity tolerance) QTLs in their genetic background and exposed them to salinity and submergence stresses individually and combined under controlled experimental conditions.

View Article and Find Full Text PDF

Quiescent cells require a continuous supply of proteins to maintain protein homeostasis. In fission yeast, entry into quiescence is triggered by nitrogen stress, leading to the inactivation of TORC1 and the activation of TORC2. In this study, we demonstrate that the Greatwall-Endosulfine-PPA/B55 pathway connects the downregulation of TORC1 with the upregulation of TORC2, resulting in the activation of Elongator-dependent tRNA modifications crucial for sustaining the translation programme during entry into quiescence.

View Article and Find Full Text PDF

Targeting fibroblast phenotype switching in cardiac remodelling as a promising antifibrotic strategy.

Eur Heart J

November 2024

Institute of Metabolic and Cardiovascular Diseases (I2MC), National Institute of Health and Medical Research (INSERM) 1297, Toulouse III University, 1 Avenue J. Poulhes, Toulouse 31432, France.

Article Synopsis
  • * The study investigates how these fibroblasts can switch between inactive and active states, impacting the process of myocardial remodeling during fibrosis resolution.
  • * Using data from the TRANSPATH database, the research outlines the signaling pathways involved in fibroblast activation, suggesting that controlling these cell states could be crucial for developing effective treatments for cardiac fibrosis, which currently lacks approved therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!