Intraoral scanning techniques, and the associated software, have revolutionized model acquisition, analysis, and virtual planning in orthodontics. Three-dimensional printing is the final aspect of this digital workflow, converting these virtual models and simulations of the tooth and occlusal movements into physical reality. This article provides an insight into how in-house three-dimensional printing is now a feasible and transformative reality for many orthodontic settings and how this empowers orthodontists to optimize their patient care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejwf.2022.10.001 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China.
Biliary duct injury, biliary atresia (BA), biliary tract tumors, primary sclerosing cholangitis (PSC), and other diseases are commonly encountered in clinical practice within the digestive system. To gain a better understanding of the pathogenesis and development of these diseases and explore more effective treatment methods, organoid technology has recently garnered significant attention. Organoids are three-dimensional structures derived from stem/progenitor cells that can faithfully mimic the intricate structure and physiological function of tissues or organs .
View Article and Find Full Text PDFConf Proc Int Conf Image Form Xray Comput Tomogr
August 2024
Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA.
Respiratory motion phantoms can be used for evaluation of CT imaging technologies such as motion artifact reduction algorithms and deformable image registration. However, current respiratory motion phantoms do not exhibit detailed lung tissue structures and thus do not provide a realistic testing environment. This paper presents PixelPrint, a method for 3D-printing deformable lung phantoms featuring highly realistic internal structures, suitable for a broad range of CT evaluations, optimizations, and research.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Biodegradable medical devices undergo degradation following implantation, potentially leading to clinical failure. Consequently, it is necessary to assess the change in their properties post-implantation. However, a standardized method for the precise evaluation of the changes in their physicochemical properties is currently lacking.
View Article and Find Full Text PDFJ Sch Health
January 2025
Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Washington, USA.
Background: Additive manufacturing or 3-dimensional (3D) printing is an emerging technology with increasing prevalence in non-industrial settings such as university and school settings. However, printers are often located in spaces not designed for this purpose.
Methods: 3D-printer use in 11 university and K-12 schools was evaluated by identifying emissions using area air sampling for volatile organic compounds (VOCs) and particle counting instruments (PCIs) measuring ultrafine particulate (UFP) and evaluating controls to reduce potential exposure.
3D Print Med
January 2025
Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.
Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!