Maintaining stability of single-molecular junctions (SMJs) in the presence of current flow is a prerequisite for their potential device applications. However, theoretical understanding of nonequilibrium heat transport in current-carrying SMJs is a challenging problem due to the different kinds of nonlinear interactions involved, including electron-vibration and anharmonic vibrational coupling. Here, we overcome this challenge by accelerating Langevin-type current-induced molecular dynamics using machine-learning potential derived from density functional theory. We show that SMJs with graphene electrodes generate an order of magnitude less heating than those with gold electrodes. This is rooted in the better phonon spectral overlap of graphene with molecular vibrations, rendering harmonic phonon heat transport being dominant. In contrast, in a spectrally mismatched junction with gold electrodes, anharmonic coupling becomes important to transport heat away from the molecule to surrounding electrodes. Our work paves the way for studying current-induced heat transport and energy redistribution in realistic SMJs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0118952 | DOI Listing |
Biomicrofluidics
December 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Bio-microfluidic technologies offer promising applications in diagnostics and therapy, yet they face significant technical challenges, particularly in the need for external power sources, which limits their practicality and user-friendliness. Recent advancements have explored innovative methods utilizing body fluids, motion, and heat to power these devices, addressing the power supply issue effectively. Among these, body-motion and body-heat-powered systems stand out for their potential to create self-sustaining, wearable, and implantable devices.
View Article and Find Full Text PDFSurv Geophys
October 2024
European Space Agency (ESA-ESRIN), 00044 Frascati, Italy.
This study uses an oceanic energy budget to estimate the ocean heat transport convergence in the North Atlantic during 2005-2018. The horizontal convergence of the ocean heat transport is estimated using ocean heat content tendency primarily derived from satellite altimetry combined with space gravimetry. The net surface energy fluxes are inferred from mass-corrected divergence of atmospheric energy transport and tendency of the ECMWF ERA5 reanalysis combined with top-of-the-atmosphere radiative fluxes from the clouds and the Earth's radiant energy system project.
View Article and Find Full Text PDFFood Chem
December 2024
Food Quality and Design, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, The Netherlands; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland. Electronic address:
This study aims to assess the effects of oven heating on the isotopic ratios of eight formulated wheat-processed products with different gluten-to-starch ratios. Two heating treatments were applied: limited heating in an oven with exposure to 100 °C for a specific time (cooking time-dependent) and extended heating in an oven with exposure to 100 °C, 180 °C and 260 °C for 6 min. Results showed limited heating exposure did not alter the δH and δO in the wheat-processed products.
View Article and Find Full Text PDFSci Rep
December 2024
School of architecture, Ocean and energy power engineering, Wuhan University of Technology, Wuhan, 430070, China.
During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!