Order of magnitude reduction in Joule heating of single molecular junctions between graphene electrodes.

J Chem Phys

School of Physics, Institute for Quantum Science and Engineering, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: November 2022

Maintaining stability of single-molecular junctions (SMJs) in the presence of current flow is a prerequisite for their potential device applications. However, theoretical understanding of nonequilibrium heat transport in current-carrying SMJs is a challenging problem due to the different kinds of nonlinear interactions involved, including electron-vibration and anharmonic vibrational coupling. Here, we overcome this challenge by accelerating Langevin-type current-induced molecular dynamics using machine-learning potential derived from density functional theory. We show that SMJs with graphene electrodes generate an order of magnitude less heating than those with gold electrodes. This is rooted in the better phonon spectral overlap of graphene with molecular vibrations, rendering harmonic phonon heat transport being dominant. In contrast, in a spectrally mismatched junction with gold electrodes, anharmonic coupling becomes important to transport heat away from the molecule to surrounding electrodes. Our work paves the way for studying current-induced heat transport and energy redistribution in realistic SMJs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0118952DOI Listing

Publication Analysis

Top Keywords

heat transport
12
order magnitude
8
graphene electrodes
8
gold electrodes
8
electrodes
5
magnitude reduction
4
reduction joule
4
joule heating
4
heating single
4
single molecular
4

Similar Publications

Bio-energy-powered microfluidic devices.

Biomicrofluidics

December 2024

Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Bio-microfluidic technologies offer promising applications in diagnostics and therapy, yet they face significant technical challenges, particularly in the need for external power sources, which limits their practicality and user-friendliness. Recent advancements have explored innovative methods utilizing body fluids, motion, and heat to power these devices, addressing the power supply issue effectively. Among these, body-motion and body-heat-powered systems stand out for their potential to create self-sustaining, wearable, and implantable devices.

View Article and Find Full Text PDF

This study uses an oceanic energy budget to estimate the ocean heat transport convergence in the North Atlantic during 2005-2018. The horizontal convergence of the ocean heat transport is estimated using ocean heat content tendency primarily derived from satellite altimetry combined with space gravimetry. The net surface energy fluxes are inferred from mass-corrected divergence of atmospheric energy transport and tendency of the ECMWF ERA5 reanalysis combined with top-of-the-atmosphere radiative fluxes from the clouds and the Earth's radiant energy system project.

View Article and Find Full Text PDF

Assessing the impact of limited and extended oven heating exposure on the stable hydrogen and oxygen isotopic composition of wheat-processed products with varying formulations.

Food Chem

December 2024

Food Quality and Design, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, The Netherlands; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland. Electronic address:

This study aims to assess the effects of oven heating on the isotopic ratios of eight formulated wheat-processed products with different gluten-to-starch ratios. Two heating treatments were applied: limited heating in an oven with exposure to 100 °C for a specific time (cooking time-dependent) and extended heating in an oven with exposure to 100 °C, 180 °C and 260 °C for 6 min. Results showed limited heating exposure did not alter the δH and δO in the wheat-processed products.

View Article and Find Full Text PDF

During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!