In this study, a novel method of coupling phytohormones with saline wastewater was proposed to drive efficient microalgal lipid production. All the six phytohormones effectively promoted microalgae growth in saline wastewater, and further increased the microalgal lipid content based on salt stress, so as to achieve a large increase in microalgal lipid productivity. Among the phytohormones used, abscisic acid had the most significant promoting effect. Under the synergistic effect of 20 g/L salt and 20 mg/L abscisic acid, the microalgal lipid productivity reached 3.7 times that of the control. Transcriptome analysis showed that differentially expressed genes (DEGs) of microalgae in saline wastewater were mainly up-regulated under the effects of phytohormones except brassinolide. Common DEGs analysis showed that phytohormones all regulated the expression of genes related to DNA repair and substance synthesis. In conclusion, synergistic effect of salt stress and phytohormones can greatly improve the microalgal lipid production efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2022.128270 | DOI Listing |
J Environ Manage
January 2025
Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK.
The prevalence of antibiotics in wastewater poses risks to human and animal health, contributing to antimicrobial resistance. Although various antibiotic removal methods exist, microalgae-based technology presents a cost-effective and eco-friendly alternative; however, limited research on its long-term integration in semi-continuous wastewater treatment trials hinders our understanding of its potential effectiveness. This investigation explored the antibiotic removal capabilities of the microalga Auxenochlorella protothecoides in photobioreactors with synthetic wastewater under semi-continuous conditions over one month.
View Article and Find Full Text PDFSci Total Environ
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand. Electronic address:
In New Zealand, the frequency and intensity of marine heatwaves (MHWs) and blooms of the harmful algal species, Alexandrium pacificum, are increasing in areas where there are natural reefs and commercial farms of the mussel, Perna canaliculus. In this study, we assessed the whole organism, tissue and molecular-level response of juvenile (spat) P. canaliculus exposed to these abiotic and biotic stressors, alone and together.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Background: Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes.
View Article and Find Full Text PDFPLoS One
January 2025
Victoria University of Wellington, Wellington, New Zealand.
Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Biorefinery and Bioenergy Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
Wastewater and livestock waste can be used as a cheap source of nutrients for microalgae growth. In this work, a cocktail waste medium (CWM) was developed using 75% Chhalera municipal wastewater (C-MWW), 25% Parag dairy wastewater (P-DWW), and 15 g L of poultry litter extract (PLE-15) for low-cost cultivation of Chlorella sp. BRE4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!