Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study evaluated whether different parameters describing cardiovascular function, energy metabolism, oxygen transport and oxidative stress were related to the critical thermal maximum (CT) of European seabass (Dicentrarchus labrax) and if there were differential changes in these parameters during and after heat shock in animals with different CT in order to characterize which physiological features make seabass vulnerable to heat waves. Seabass (n = 621) were tested for CT and the physiological parameters were measured in individuals with good or poor temperature tolerance before and after a heat shock (change in temperature from 15 °C to 28 °C in 1.5 h). Fish with good thermal tolerance had larger ventricles with higher maximal heart rate during the heat shock than individuals with poor tolerance. Furthermore, they initially had a high ventricular Ca-ATPase activity, which was reduced to a similar level as in fish with poor tolerance following heat shock. The activity of heart lactate dehydrogenase increased in fish with high tolerance, when they were exposed to heat shock, while the aerobic enzyme activity did not differ between groups. The tolerant individuals had smaller red muscle fibers with higher myoglobin content than the poorly tolerant ones. The poorly tolerant individuals had higher hematocrit, which increased with heat shock in both groups. The poorly tolerant individuals had also higher activity of enzymes related to oxidative stress especially after heat shock. In general, CT was not depending on merely one physiological factor but several organ and cellular parameters were related to the CT of seabass and when working in combination they might protect the highly tolerant seabass from future heat waves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2022.111340 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!