The rapid industrialization of the world is disparagingly manipulating our environment and natural ecosystem. The researchers are taking keen interest to invent novel material as photocatalyst for non-degradable organic pollutants. Solar energy-driven practices employing semiconductors are a novel approach towards wastewater remediation. Here in, we successfully synthesized a vigorous photocatalysts comprising of g-CN and doped ZnO-W/M (M = Co, Ce, Yb, Sm) by co-precipitation followed by metals doping via calcination approach. The structural, morphological, and photocatalytic applications for organic pollutants of synthesized heterostructure nanocomposites were examined by XRD, FTIR, SEM, EDX and UV visible spectrophotometer. Diffraction peaks attributed to both g-CN and ZnO-W were detected in the XRD spectra. The FTIR spectra also inveterate the formation of g-CN/ZnO-W/M composites. The SEM images reveal an agglomerated morphology and EDS analysis also confirmed close contact between g-CN, ZnO-W and doped metals. The abridged energy band gap of g-CN/ZnO-W/M (M = Ce, Yb, Sm, Co) nanocomposites calculated via Tauc plot are 2.68, 2.88, 3.24 and 3.29 eV respectively. Narrowing of bandgap is considered an imperative triumph for the degradation of industrial effluents. The photocatalytic activity was performed against four different dyes and follows the trend Ce > Yb > Sm > Co. The recyclability tests were carried out for different dyes and no substantial catalytic activity loss was observed even after the fourth experimental run, which proves that reported ternary heterojunctions exhibit high mechanical stability and reusability.The species trapping experiment exposed that generated h are the principal active specie for dye photodegradation reactions. This work disseminates a novel photocatalyst for the removal of synthetic dyes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.114621 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
The State University of New York College of Environmental Science and Forestry, Syracuse, USA.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China.
Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of HO and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of HO on VOC oxidation.
View Article and Find Full Text PDFEnviron Res
January 2025
Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China; School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China. Electronic address:
This paper focuses on the research background of zeolite-based photocatalytic materials, the role of zeolites in photocatalytic materials, and their application in various fields. It focuses on the critical roles of zeolites in photocatalytic materials and their application prospects. It outlines the mechanisms of zeolites in different photocatalytic materials, including adsorption, structural stabilization, domain-limiting, electric field, catalysis, ion exchange, shape-selective, and solvation, which elucidates the potential advantages of zeolites in photocatalytic materials.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China. Electronic address:
Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains.
View Article and Find Full Text PDFLangmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!