Astaxanthin is a natural liposoluble ketocarotenoid with various biological activities. Hydrophobic astaxanthin with C symmetry can self-assembly form H-type aggregates and J-type aggregates in hydrated polar solvents. However, astaxanthin and its aggregates are limited by its water insolubility and chemical instability. Here, the biological macromolecules bovine serum albumin (BSA) and chitosan were chosen as protein-polysaccharides based delivery systems for astaxanthin aggregates by molecular self-assembly method. The precise prepared H-ABC-NPs and J-ABC-NPs suspensions were both near spheres with hydrodynamic size around 281 ± 9 nm and 368 ± 5 nm and zeta potentials around +26 mV and +30 mV, respectively. Two types of astaxanthin aggregates were distinguished, water-dispersible, and stable in nanocarriers through UV-vis spectra observation. The encapsulation efficiency of the astaxanthin in ABC-NPs was above 90 %. Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) analyses indicated that the dominant driving forces of ABC-NPs formation mainly included electrostatic, hydrophobic interactions and hydrogen bonding. These results offer an elegant opportunity for the protein-polysaccharides delivery systems, and provide an important perspective for applying novel water-dispersed astaxanthin aggregates products in nutrition and medicine industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.006 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.
View Article and Find Full Text PDFFood Chem
March 2025
Human Nutrition Program, The Ohio State University, Columbus, OH 43210, United States; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, United States. Electronic address:
Previous results have been mixed as to whether the emulsifying agent lecithin increases carotenoid bioaccessibility and Caco-2 cellular uptake. The dose-response effect of lecithin (0-5 mg) on carotenoid bioaccessibility and Caco-2 cellular uptake was investigated in vitro using a mixture of β-carotene, lycopene, lutein, zeaxanthin and astaxanthin. Resulting micelles were incubated with Caco-2 cells for 4 h.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China. Electronic address:
Astaxanthin, a lipid-soluble carotenoid, is widely recognized for its health-promoting properties. However, its use in functional foods is limited due to its low water solubility, chemical instability, and poor bioavailability. This study evaluated the potential of esterified starch-stabilized emulsions as astaxanthin carriers.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
State Key Laboratory of Biobased Material and Green Papermaking, Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. Electronic address:
Developing green and efficient delivery systems to promote bioavailability of bioactive ingredients is a sustained demand in food industry. In this work, the astaxanthin (AST)-loaded starch-based fast-dissolving nanofibers with core-shell structure were prepared by emulsion electrospinning technique without using any organic solvent. To load water-insoluble AST in hydrophilic octenyl succinic anhydride starch (OSAS)/polyvinyl alcohol (PVA) nanofiber matrices, AST-loaded nanoscale emulsions (212.
View Article and Find Full Text PDFJ Asian Nat Prod Res
October 2024
Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India.
The incidence of Alzheimer's is increasing and poses a significant social and economic burden. The pathogenesis involved in the expansion of AD includes neuronal oxidative damage, tau phosphorylation, amyloid beta aggregation, neuroinflammation, etc. Despite enormous efforts, there is currently no effective treatment or cure for this condition in the allopathic system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!