The development of ascomycete fungal colonies involves cell-cell fusion at different growth stages. In the model fungus Neurospora crassa, communication of two fusing cells is mediated by an unusual signaling mechanism, in which the two partners take turns in signal sending and receiving. In recent years, the molecular basis of this unusual cellular behavior has started to unfold, indicating the presence of an excitable signaling network. New evidence suggests that this communication system is highly conserved in ascomycete fungi and, unexpectedly, even mediates interspecies interactions. At the same time, intricate allorecognition mechanisms were identified, which prevent the fusion of genetically unlike individuals. These observations suggest that signal specificity during fungal social behavior has not evolved on the level of signals and receptors, but is achieved at downstream checkpoints. Despite growing insight into the molecular mechanisms controlling self and non-self fungal interactions, their role in natural environments remains largely unknown.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceb.2022.102140DOI Listing

Publication Analysis

Top Keywords

highly conserved
8
cell-cell fusion
8
conserved highly
4
highly specific
4
specific somatic
4
somatic cell-cell
4
fusion filamentous
4
filamentous fungi
4
fungi development
4
development ascomycete
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!