Docetaxel is among the most effective chemotherapeutic agents used for the treatment of solid tumors, such as breast cancer. Targeting docetaxel to the tumor site would increase the safety and efficacy of the treatment. The focus of this work was to develop an efficient liquid chromatography tandem mass spectrometry (LC-MS/MS) method to quantify docetaxel entrapped in optimized poly lactic-co-glycolic acid (PLGA) nanoparticles. Several nanoparticle formulations were prepared to optimize the nanoparticles based on their size and yield percentage using a modified solvent evaporation technique. The MS/MS fingerprints of docetaxel and paclitaxel (as internal standard) were used to identify diagnostic product ion for developing a multiple reaction monitoring (MRM) LC-MS/MS method for the quantification of docetaxel in the PLGA nanoparticles. A triple quadrupole linear ion trap instrument (AB Sciex 4000 QTRAP) equipped with electrospray ionization was used. The optimized nanoparticles had a zeta potential of -23.2 ± 1.4 mV and mean particle sizes of 202.2 ± 4.7 nm and 251.7 ± 8.2 nm before and after freeze-drying, respectively. Polydispersity index values of the nanoparticles confirmed their uniform size distribution. The developed LC-MS/MS method could quantify docetaxel in the PLGA matrix with accuracy and precision covering a broad linear range of 15.6-4000 ng/mL. Method validation was conducted using the regulatory guidelines of the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) and showed acceptable values for all the tested criteria. The developed LC-MS/MS method with the novelty of using a phenyl column will be beneficial for future analysis of docetaxel loaded polymeric nano-delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2022.115114DOI Listing

Publication Analysis

Top Keywords

lc-ms/ms method
16
mass spectrometry
8
method quantify
8
quantify docetaxel
8
plga nanoparticles
8
docetaxel plga
8
developed lc-ms/ms
8
docetaxel
7
method
6
nanoparticles
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!