AI Article Synopsis

Article Abstract

Yb(III) complexes of macrocyclic ligands based on 1,4,7,10-tetraazacyclododecane were synthesized. The ligands carried a carbostyril chromophore for Yb(III) sensitization, and carboxylate or carbamide donors for metal binding, forming complexes of 0, +1, +2, or +3 overall charge. The coordination geometry was little affected by the replacement of carboxylates with amides, as shown by paramagnetic H NMR spectroscopy. The Yb(III)/Yb(II) reduction potentials were dependent on the nature of the metal binding site, and the more positively charged complexes were easier to reduce. Carbostyril excitation resulted in Yb(III) luminescence in every complex. The residual carbostyril fluorescence quantum yields were smaller in complexes containing more reducible Yb(III) centers decreasing from 5.9% for uncharged complexes to 3.1-4.4% in +3 charged species, suggesting photoinduced electron transfer (PeT) from the antenna to the Yb(III). The relative Yb(III) luminescence quantum yields were identical within the experimental error, except for the +3 charged complex with fully methylated coordinating amides, which was the most intense Yb(III) emitter of the series in water. Quenching of the Yb(III) excited state by NH vibrations proved to limit Yb(III) emission. No clear improvement of the Yb(III) sensitization efficiency was shown upon faster PeT. This result can be explained by the concomitant sensitization of Yb(III) by phonon-assisted energy transfer (PAEnT) from the antenna triplet excited state, which was completely quenched in all of the Yb complexes. Depopulation of the triplet by PeT quenching of the donor singlet excited state would be compensated by the sensitizing nature of the PeT pathway, thus resulting in a constant overall sensitization efficiency across the series.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706556PMC
http://dx.doi.org/10.1021/jacs.2c05813DOI Listing

Publication Analysis

Top Keywords

ybiii
12
excited state
12
ybiii complexes
8
ybiii sensitization
8
metal binding
8
ybiii luminescence
8
quantum yields
8
sensitization efficiency
8
complexes
7
sensitization
5

Similar Publications

Thiophenyl Anilato-Based NIR-Emitting Lanthanide (Ln = Er, Yb) Dinuclear Complexes.

Molecules

December 2024

Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Complesso Universitario di Monserrato, S.P. 8 Km 0.700, I-09042 Monserrato, Italy.

By combining Er and Yb ions with 3,6-dithiophene-anilate (ThAn) and scorpionate hydrotris(pyrazol-1-yl)borate (HBpz) ligands new luminescent dinuclear complexes are obtained. The two materials formulated as [((HB(pz))Yb)(μ-thAn)]·4DCM·1.3HO and [((HB(pz))Er)(μ-thAn)]·4DCM·1.

View Article and Find Full Text PDF

Multielectron Redox Chemistry of Ytterbium Complexes Reaching the +1 and Zero Formal Oxidation States.

J Am Chem Soc

January 2025

Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Lanthanide redox reactivity remains limited to one-electron transfer reactions due to their inability to access a broad range of oxidation states. Here, we show that multielectron reductive chemistry is achieved for ytterbium by using the tripodal tris(siloxide)arene redox-active ligand, which can store two electrons in the arene anchor. Reduction of the Yb(III) complex of the tris(siloxide)arene tripodal ligand affords the Yb(II) analogue by metal-centered reduction.

View Article and Find Full Text PDF

Coexistence of room temperature magneto-chiral dichroism and magneto-electric coupling in a chiral nanomagnet.

Nanoscale

December 2024

Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, Grenoble, France.

We report herein on the magneto-chiral dichroism (MChD), investigated through near infrared light absorption, of a chiral nanomagnet showing room temperature magneto-electric coupling. The MChD signal associated with the Yb center is driven by the magnetic dipole allowed character of the F ← F electronic transition (|Δ| = 1). Magnetic field and temperature dependence studies reveal an MChD signal that follows the material magnetization and persists at room temperature.

View Article and Find Full Text PDF

A relatively unexplored approach in heterometallic chemistry of transition metals and lanthanides has been developed toward the controlled synthesis of a new family of linear heterotrinuclear Ln(III)-Pd(II)-Ln(III) complexes with the general formula [LnPd(pao)(NO)(MeOH)(HO)]·[Pd(pao)], where Ln = Dy (2), Gd (3), Er (4) and Yb (5). This strategy was based on the diamagnetic 'metalloligand' [Pd(pao)] (1), where pao is the anion of 2-pyridinealdoxime, containing two dangling oximate O-atoms which were to each other and available for binding with oxophilic lanthanide ions. Because of their -configuration, the [Pd(pao)] 'metalloligand' was able to direct the binding of two {Ln(NO)(MeOH)(HO)} units on opposite sites, thus yielding the reported trinuclear {Ln-Pd-Ln} clusters.

View Article and Find Full Text PDF

Ligands combining two lateral bis-pyridyl-phosphonated-pyclens were synthesized, using a flexible linear pegylated linker (L2) or a bulkier K22 crown-ether (L3). A functionalized pyridyl-phosphonated-pyclen (L1) was also prepared as a mononuclear analogue. Coordination behavior of lanthanide cations was studied via NMR titration with Lu for L1, and UV/Vis and luminescence spectroscopy with Yb for L2/L3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!