ACS Synth Biol
Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States.
Published: November 2022
Kill switches provide a biocontainment strategy in which unwanted growth of an engineered microorganism is prevented by expression of a toxin gene. A major challenge in kill switch engineering is balancing evolutionary stability with robust cell killing activity in application relevant host strains. Understanding host-specific containment dynamics and modes of failure helps to develop potent yet stable kill switches. To guide the design of robust kill switches in the agriculturally relevant strain SBW25, we present a comparison of lethality, stability, and genetic escape of eight different toxic effectors in the presence of their cognate inactivators (i.e., toxin-antitoxin modules, polymorphic exotoxin-immunity systems, restriction endonuclease-methyltransferase pair). We find that cell killing capacity and evolutionary stability are inversely correlated and dependent on the level of protection provided by the inactivator gene. Decreasing the proteolytic stability of the inactivator protein can increase cell killing capacity, but at the cost of long-term circuit stability. By comparing toxins within the same genetic context, we determine that modes of genetic escape increase with circuit complexity and are driven by toxin activity, the protective capacity of the inactivator, and the presence of mutation-prone sequences within the circuit. Collectively, the results of our study reveal that circuit complexity, toxin choice, inactivator stability, and DNA sequence design are powerful drivers of kill switch stability and valuable targets for optimization of biocontainment systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.2c00386 | DOI Listing |
Nat Microbiol
January 2025
Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Improved vaccination strategies for tuberculosis are needed. Intravenous (i.v.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
Human challenge experiments could accelerate tuberculosis vaccine development. This requires a safe Mycobacterium tuberculosis (Mtb) strain that can both replicate in the host and be reliably cleared. Here we genetically engineered Mtb strains encoding up to three kill switches: two mycobacteriophage lysin operons negatively regulated by tetracycline and a degron domain-NadE fusion, which induces ClpC1-dependent degradation of the essential enzyme NadE, negatively regulated by trimethoprim.
View Article and Find Full Text PDFSci Total Environ
January 2025
Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China. Electronic address:
Viruses wield significant influence over microbial communities and ecosystem function in marine environments. However, the selection of viral life strategies and their impacts on microbial communities remains enigmatic. In this study, we utilized a large-scale macrocosm, established using water samples from a marine coastal region, to enable community-level investigation.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Background: Pluripotent cell-derived islet replacement therapy offers promise for treating Type 1 diabetes (T1D), but concerns about uncontrolled cell proliferation and tumorigenicity present significant safety challenges. To address the safety concern, this study aims to establish a proof-of-concept for a glucose-responsive, insulin-secreting cell line integrated with a built-in FailSafe kill-switch.
Method: We generated β cell-induced progenitor-like cells (βiPLCs) from primary mouse pancreatic β cells through interrupted reprogramming.
Environ Sci Technol
December 2024
Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
The development of genetically engineered microbes (GEMs) has resulted in an urgent need to control their persistence in the environment. The use of biocontainment such as kill switches is a critical approach to prevent the unintended proliferation of GEMs; however, the effectiveness of kill switches─reported as escape rates, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.