An improved method for the generation of peptide vaccines using di-tyrosine cross-linking is described. The conserved ion channel peptide, M2e, of influenza A virus was modified with the addition of small tyrosine-rich regions (GYGY-) at both the N- and C-termini and extensively cross-linked via tyrosine-tyrosine linkages to form peptide nanoclusters. The cross-linking was catalyzed using exogenous nickel(II) ions complexed to an exogenous glycine-glycine-histidine peptide in the presence of an oxidizer. Mice that were intranasally or intramuscularly immunized with the M2e-vaccine nanoclusters induced comparable levels of M2e-specific serum antibodies. Vaccination via the intranasal or intramuscular route protected mice from subsequent lethal challenge with an influenza A virus. In comparison to our previous approach, where a histidine-rich tag was added into the peptide structure, the use of exogenous histidine reduced irrelevant off-target immune response. Additionally, the purity of the resulting nanoclusters is an attractive feature, making this approach appealing for vaccine development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.2c00265 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!