Clinical outcomes after lung transplantation, a life-saving therapy for patients with end-stage lung diseases, are limited by primary graft dysfunction (PGD). PGD is an early form of acute lung injury with no specific pharmacologic therapies. Here, we present a large multicenter study of plasma and bronchoalveolar lavage (BAL) samples collected on the first posttransplant day, a critical time for investigations of immune pathways related to PGD. We demonstrated that ligands for NKG2D receptors were increased in the BAL from participants who developed severe PGD and were associated with increased time to extubation, prolonged intensive care unit length of stay, and poor peak lung function. Neutrophil extracellular traps (NETs) were increased in PGD and correlated with BAL TNF-α and IFN-γ cytokines. Mechanistically, we found that airway epithelial cell NKG2D ligands were increased following hypoxic challenge. NK cell killing of hypoxic airway epithelial cells was abrogated with NKG2D receptor blockade, and TNF-α and IFN-γ provoked neutrophils to release NETs in culture. These data support an aberrant NK cell/neutrophil axis in human PGD pathogenesis. Early measurement of stress ligands and blockade of the NKG2D receptor hold promise for risk stratification and management of PGD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869973 | PMC |
http://dx.doi.org/10.1172/jci.insight.164603 | DOI Listing |
Sci Rep
January 2025
Chaum Life Center, CHA University School of Medicine, Seoul, 06062, Korea.
No biomarker can effectively screen for early gastric cancer (EGC). Players in the A disintegrin and metalloproteinase (ADAM)-natural killer group 2 member D (NKG2D) receptor axis may have a role for that. As a proof-of-concept pilot study, the expression of ADAM8, ADAM9, ADAM10, ADAM12, ADAM17, and major histocompatibility complex (MHC) class I chain-related sequence A (MICA), a ligand for NKG2D, in gastric cancer was investigated in silico using The Cancer Genome Atlas (TCGA) database.
View Article and Find Full Text PDFImmunol Rev
January 2025
W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA.
Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China.
While previous studies have established the role of exosomal miR-552-5p in promoting gastric cancer (GC) progression, the exact mechanisms through which it modulates the PD-1/PD-L1 axis to affect NK cell function and subsequently influence GC epithelial-mesenchymal transition (EMT) remain to be elucidated. Western blot, transmission electron microscopy (TEM), and nanoparticle tracking analysis were used to characterize exosomes that were isolated from GC cell supernatants. Subcutaneous AGS cell injections expressing either Lv-miR-552-5p or Lv-NC were administered to nude BALB/C mice.
View Article and Find Full Text PDFStem Cells
December 2024
Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo.
Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK cell receptors and their ligands.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Given the limited comprehensive data on the bone marrow (BM) immune environment in acute myeloid leukemia (AML), we analyzed the distribution and phenotype of T cell subsets, including γδ T cells, and their immune checkpoint (IC) ligands on blasts. We performed multiparametric flow cytometry with BM samples taken from 89 AML patients at the time of diagnosis, remission, and relapse/refractory status after chemotherapy and 13 healthy controls (HCs) to identify immune-related risk factors. Compared to the HCs, the T cells of the AML patients exhibited exhausted features including higher TIGIT levels and similar levels of PD-1 and TIM-3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!