Background: Topic modeling approaches allow researchers to analyze and represent written texts. One of the commonly used approaches in psychology is latent Dirichlet allocation (LDA), which is used for rapidly synthesizing patterns of text within "big data," but outputs can be sensitive to decisions made during the analytic pipeline and may not be suitable for certain scenarios such as short texts, and we highlight resources for alternative approaches. This review focuses on the complex analytical practices specific to LDA, which existing practical guides for training LDA models have not addressed.
Objective: This scoping review used key analytical steps (data selection, data preprocessing, and data analysis) as a framework to understand the methodological approaches being used in psychology research using LDA.
Methods: A total of 4 psychology and health databases were searched. Studies were included if they used LDA to analyze written words and focused on a psychological construct or issue. The data charting processes were constructed and employed based on common data selection, preprocessing, and data analysis steps.
Results: A total of 68 studies were included. These studies explored a range of research areas and mostly sourced their data from social media platforms. Although some studies reported on preprocessing and data analysis steps taken, most studies did not provide sufficient detail for reproducibility. Furthermore, the debate surrounding the necessity of certain preprocessing and data analysis steps is revealed.
Conclusions: Our findings highlight the growing use of LDA in psychological science. However, there is a need to improve analytical reporting standards and identify comprehensive and evidence-based best practice recommendations. To work toward this, we developed an LDA Preferred Reporting Checklist that will allow for consistent documentation of LDA analytic decisions and reproducible research outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682457 | PMC |
http://dx.doi.org/10.2196/33166 | DOI Listing |
Int J Dev Neurosci
February 2025
Department of Computer Science and Engineering, Vels Institute of Science & Technology & Advanced Studies, Chennai, Tamilnadu, India.
Nowadays, virtual reality (VR) has emerged as a successful new therapeutic strategy in a variety of sectors of the health profession, including rehabilitation, the promotion of inpatients' emotional wellness, diagnostics, surgeon training and mental health therapy. This study develops a new model VRAPMG for children with ASD with the following steps that consider 3D gaming. In this work, the face image is considered to evaluate the attention of the children.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
With the emergence of numerous classifications, surgical treatment for adolescent idiopathic scoliosis (AIS) can be guided more effectively. However, surgical decision-making and optimal strategies still lack standardization and personalized customization. Our study aims to devise proper deep learning (DL) models that incorporate key factors influencing surgical outcomes on the coronal plane in AIS patients to facilitate surgical decision-making and predict surgical results for AIS patients.
View Article and Find Full Text PDFPhys Med Biol
January 2025
School of Biomedical Engineering, ShanghaiTech University, No. 1 Zhongke Road, Pudong New Area, Shanghai, Shanghai, 201210, CHINA.
Objective: This study aims to propose a dual-domain network that not only reduces scatter artifacts but also retains structure details in CBCT.
Approach: The proposed network comprises a projection-domain sub-network and an image-domain sub-network. The projection-domain sub-network utilizes a division residual network to amplify the difference between scatter signals and imaging signals, facilitating the learning of scatter signals.
JMIR Form Res
January 2025
Department of Computer Science, University of California, Irvine, Irvine, CA, United States.
Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.
View Article and Find Full Text PDFPLoS One
January 2025
School of Information and Communication Engineering, Beijing University of Information Science and Technology, Bei Jing City, China.
To enhance the intelligent classification of computer vulnerabilities and improve the efficiency and accuracy of network security management, this study delves into the application of a comprehensive classification system that integrates the Memristor Neural Network (MNN) and an improved Temporal Convolutional Neural Network (TCNN) in network security management. This system not only focuses on the precise classification of vulnerability data but also emphasizes its core role in strengthening the network security management framework. Firstly, the study designs and implements a neural network model based on memristors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!