Ca/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a brain-relevant kinase and an emerging drug target for ischemic stroke and neurodegenerative disorders. Despite reported CaMKIIα inhibitors, their usefulness is limited by low subtype selectivity and brain permeability. ()-2-(5-Hydroxy-5,7,8,9-tetrahydro-6-benzo[7]annulen-6-ylidene)acetic acid (NCS-382) is structurally related to the proposed neuromodulator, γ-hydroxybutyric acid, and is a brain-penetrating high nanomolar-affinity ligand selective for the CaMKIIα hub domain. Herein, we report the first series of NCS-382 analogs displaying improved affinity and preserved brain permeability. Specifically, we present Ph-HTBA () with enhanced mid-nanomolar affinity for the CaMKIIα binding site and a marked hub thermal stabilization effect along with a distinct CaMKIIα Trp403 flip upon binding. Moreover, Ph-HTBA has good cellular permeability and low microsomal clearance and shows brain permeability after systemic administration to mice, signified by a high Kp, uu value (0.85). Altogether, our study highlights Ph-HTBA as a promising candidate for CaMKIIα-associated pharmacological interventions and future clinical development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.2c00805 | DOI Listing |
Front Endocrinol (Lausanne)
December 2024
Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
Although pituitary tumors (PTs) are mostly benign, some PTs are characterized by low surgical resection rates, high recurrence rates, and poor response to conventional treatments and profoundly affect patients' quality of life. Everolimus (EVE) is the only FDA-approved mTOR inhibitor, which can be used for oral treatment. It effectively inhibits tumor cell proliferation and angiogenesis.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China.
Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
December 2024
BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences University of Nebrija Madrid Spain.
Unlabelled: A systematic review and meta-analysis examined the impact of gut microbiota in Alzheimer's disease (AD) pathogenesis. Dysbiosis may influence neurodegeneration by affecting gut permeability and neurotrophic factors, leading to cognitive decline. The study analyzed microbiome differences between patients with AD and healthy individuals, as well as the impact of various interventions in both preclinical and clinical studies.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkiye.
Background/aim: Circadian rhythm proteins (CRPs) play critical roles in both physiological and pathophysiological conditions, including neurodegenerative disorders. As members of CRPs, the nuclear receptors Rev-Erbα/β regulate circadian rhythm particularly by inhibiting Bmal1 protein and are involved in the neuroinflammation and cell death processes. However, their roles in the development of neuronal injury after traumatic brain injury (TBI) were largely unexplored, and so were investigated in the present study.
View Article and Find Full Text PDFTransl Stroke Res
December 2024
Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.
Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!