Jasmonate-regulated root growth inhibition and root hair elongation.

J Exp Bot

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.

Published: February 2023

The phytohormone jasmonate is an essential endogenous signal in the regulation of multiple plant processes for environmental adaptation, such as primary root growth inhibition and root hair elongation. Perception of environmental stresses promotes the accumulation of jasmonate, which is sensed by the CORONATINE INSENSITIVE1 (COI1)-JASMONATE ZIM-DOMAIN (JAZ) co-receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming. The basic helix-loop-helix (bHLH) subgroup IIIe transcription factors MYC2, MYC3, and MYC4 are the most extensively characterized JAZ-binding factors and together stimulate jasmonate-signaled primary root growth inhibition. Conversely, the bHLH subgroup IIId transcription factors (i.e. bHLH3 and bHLH17) physically associate with JAZ proteins and suppress jasmonate-induced root growth inhibition. For root hair development, JAZ proteins interact with and inhibit ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1) transcription factors to modulate jasmonate-enhanced root hair elongation. Moreover, jasmonate also interacts with other signaling pathways (such as ethylene and auxin) to regulate primary root growth and/or root hair elongation. Here, we review recent progress into jasmonate-mediated primary root growth and root hair development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923215PMC
http://dx.doi.org/10.1093/jxb/erac441DOI Listing

Publication Analysis

Top Keywords

root hair
28
root growth
24
growth inhibition
16
hair elongation
16
primary root
16
root
12
inhibition root
12
transcription factors
12
bhlh subgroup
8
jaz proteins
8

Similar Publications

Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice.

Eur J Pharmacol

January 2025

Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.

Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.

View Article and Find Full Text PDF

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

A high-throughput ResNet CNN approach for automated grapevine leaf hair quantification.

Sci Rep

January 2025

Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany.

The hairiness of the leaves is an essential morphological feature within the genus Vitis that can serve as a physical barrier. A high leaf hair density present on the abaxial surface of the grapevine leaves influences their wettability by repelling forces, thus preventing pathogen attack such as downy mildew and anthracnose. Moreover, leaf hairs as a favorable habitat may considerably affect the abundance of biological control agents.

View Article and Find Full Text PDF

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.

View Article and Find Full Text PDF

Endophytic Bacteria from the Desiccation-Tolerant Plant and Their Potential as Plant Growth-Promoting Microorganisms.

Microorganisms

December 2024

Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico.

Bacteria associated with plants, whether rhizospheric, epiphytic, or endophytic, play a crucial role in plant productivity and health by promoting growth through complex mechanisms known as plant growth promoters. This study aimed to isolate, characterize, identify, and evaluate the potential of endophytic bacteria from the resurrection plant in enhancing plant growth, using ecotype Col. 0 as a model system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!