The ADAPT (Assisted Design of Antibody and Protein Therapeutics) platform guides the selection of mutants that improve/modulate the affinity of antibodies and other biologics. Predicted affinities are based on a consensus z-score from three scoring functions. Computational predictions are interleaved with experimental validation, significantly enhancing the robustness of the design and selection of mutants. A key step is an initial exhaustive virtual single-mutant scan that identifies hot spots and the mutations predicted to improve affinity. A small number of proposed single mutants are then produced and assayed. Only the validated single mutants (i.e., having improved affinity) are used to design double and higher-order mutants in subsequent rounds of design, avoiding the combinatorial explosion that arises from random mutagenesis. Typically, with a total of about 30-50 designed single, double, and triple mutants, affinity improvements of 10- to 100-fold are obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2609-2_20 | DOI Listing |
ACS Infect Dis
January 2025
Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States.
Developing new classes of drugs that are active against infections caused by is a priority for treating and managing this deadly disease. Here, we describe screening a small library of 20 DNA gyrase inhibitors and identifying new lead compounds. Three structurally diverse analogues were identified with minimal inhibitory concentrations of 0.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.
Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.
mTOR plays a crucial role in PI3K/AKT/mTOR signaling. We hypothesized that mTOR activation mechanisms driving oncogenesis can advise effective therapeutic designs. To test this, we combined cancer genomic analysis with extensive molecular dynamics simulations of mTOR oncogenic variants.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
Selective poly(ADP-ribose) polymerase 1 (PARP1) inhibitors not only exhibit antitumor efficacy but also offer the potential to mitigate the toxicities typically associated with broader PARP inhibition. In this study, we designed and synthesized a series of small molecules targeting highly selective PARP1 inhibitors. Among these, demonstrated excellent selectivity to PARP1 along with the capability to effectively cross the blood-brain barrier (BBB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!