Does Oxidative Stress Along with Dysbiosis Participate in the Pathogenesis of Asthma in the Obese?

Cell Biochem Biophys

Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.

Published: March 2023

The most important environmental factor that can play a key role in the development of asthma in the obese is overproduction of reactive oxygen species (ROS). The aim of the study was to examine changes in the concentration of oxidative stress parameters in the lungs, bronchoalveolar lavage (BAL) fluid and blood of mice in models of asthma or/and obesity caused by high-fat diet (HFD). The concentrations of 4-HNE and isoprostanes in the lungs of the animals were measured. BAL fluid levels of hydrogen peroxide were marked. Additionally, thiobarbituric acid reactive substances (TBARS) and ferric reducing ability of plasma (FRAP) were used as biomarkers of oxidative stress in the blood. Administration of lipoic acid (LA), a probiotic with standard-fat diet (SFD, 10% fat) and low-fat diet (LFD, 5% fat) significantly decreased the concentration of 4-HNE as compared to the OVA (ovalbumin) + HFD group (p < 0.05). Treatment with low-fat diet or LFD in combination with apocynin insignificantly decreased HO values as compared to the OVA + HFD group. Supplementation of probiotic with SFD and LFD significantly decreased the concentration of TBARS as compared to the OVA + SFD and saline + HDF groups (p < 0.05). Significantly lower concentrations of TBARS were also observed in the LA plus LFD group (p < 0.05) as compared to the OVA + HFD group. Low-fat diet with probiotic significantly increased the concentration of FRAP as compared to the obese mice (p = 0.017). Treatment with LFD in combination with LA significantly increased FRAP values as compared to the obese and obese asthmatic mice (p < 0.001).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925511PMC
http://dx.doi.org/10.1007/s12013-022-01114-zDOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
bal fluid
8
stress dysbiosis
4
dysbiosis participate
4
participate pathogenesis
4
pathogenesis asthma
4
asthma obese?
4
obese? environmental
4
environmental factor
4
factor play
4

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!