AI Article Synopsis

  • Diets high in fruits and vegetables positively affect the gut microbiome, but specific impacts of individual foods, like tomatoes, are less understood.
  • This study investigates the effects of tomato consumption on gut microbiome profiles using piglets as models, with one group receiving a tomato powder-supplemented diet for 14 days.
  • Results showed a beneficial microbial shift in the tomato-fed group, with increased diversity and favorable microbial ratios, indicating potential health benefits that warrant further research in humans.

Article Abstract

Diets rich in fruits and vegetables have been shown to exert positive effects on the gut microbiome. However, little is known about the specific effect of individual fruits or vegetables on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and their consumption has been associated with positive health outcomes. Using piglets as a physiologically relevant model of human metabolism, 20 animals were assigned to either a control or a tomato powder-supplemented diet (both macronutrient matched and isocaloric) for 14 days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7 (midpoint), and day 14 (end of study). DNA was sequenced using shotgun metagenomics, and reads were annotated using MG-RAST. There were no differences in body weight or feed intake between our two treatment groups. There was a microbial shift which included a higher ratio of to (formerly known as and , respectively) and higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype. Analyses at both the phylum and genus levels showed global microbiome profile changes (permutational multivariate analysis of variance [PERMANOVA],  ≤ 0.05) over time but not with tomato consumption. These data suggest that short-term tomato consumption can beneficially influence the gut microbial profile, warranting further investigation in humans. The composition of the microorganisms in the gut is a contributor to overall health, prompting the development of strategies to alter the microbiome composition. Studies have investigated the role of the diet on the microbiome, as it is a major modifiable risk factor contributing to health; however, little is known about the causal effects of consumption of specific foods on the gut microbiota. A more complete understanding of how individual foods impact the microbiome will enable more evidence-based dietary recommendations for long-term health. Tomatoes are of interest as the most consumed nonstarchy vegetable and a common source of nutrients and phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato consumption on the microbiome, using piglets as a physiologically relevant model to humans. We found that tomato consumption can positively affect the gut microbial profile, which warrants further investigation in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769997PMC
http://dx.doi.org/10.1128/spectrum.02506-22DOI Listing

Publication Analysis

Top Keywords

tomato consumption
24
short-term tomato
12
gut microbiome
12
consumption
9
microbiome
9
gut
8
fruits vegetables
8
piglets physiologically
8
physiologically relevant
8
relevant model
8

Similar Publications

Research progress in the application of infrared blanching in fruit and vegetable drying process.

Compr Rev Food Sci Food Saf

January 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.

Fruits and vegetables offer substantial nutritional and health benefits, but their short shelf life necessitates effective preservation methods. Conventional drying techniques, while efficient, often lead to deterioration in food quality. Recent advancements highlight the potential of infrared blanching (IRB) as a preparatory process to improve drying outcomes.

View Article and Find Full Text PDF

toxins (ATs) are a group of toxins produced by fungi that frequently contaminate tomatoes and tomato products. Recently, the European Food Safety Authority evaluated ATs for their genotoxic and carcinogenic properties. infestation is often controlled using ad hoc treatment strategies (fungicides).

View Article and Find Full Text PDF

Machine learning has been used in various areas, but there are few studies on price prediction for agricultural products. Here, a machine learning technique for the price prediction of tomato and apple fruits was attempted based on environment and price data for 12 years. The goal of this study is to discover 1) how much can we accurately predict the product prices with the environmental factors and 2) how much each environmental factor affects to the product prices.

View Article and Find Full Text PDF

Typhlodromus (Anthoseius) recki feeds on pest mites on tomato plants and its introduction into crops via companion plants, Mentha suaveolens and Phlomis fruticosa, has been recently investigated. This study aims at assessing the predator arrestment behavior, through lab choice tests to determine the effects of (i) prey (Aculops lycopersici and Tetranychus urticae) vs Typha angustifolia pollen deposited on companion plant or Solanum nigrum, (ii) T. urticae vs A.

View Article and Find Full Text PDF

Prevalence of Antibiotic Resistance Genes in Differently Processed Smoothies and Fresh Produce from Austria.

Foods

December 2024

Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.

Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!