Efficient -demethylation of lignin monoaromatics using the peroxygenase activity of cytochrome P450 enzymes.

Chem Commun (Camb)

Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.

Published: December 2022

A crucial reaction in harnessing renewable carbon from lignin is -demethylation. We demonstrate the selective -demethylation of syringol and guaiacol using different cytochrome P450 enzymes. These can efficiently use hydrogen peroxide which, when compared to nicotinamide cofactor-dependent monooxygenases and synthetic methods, allows for cheap and clean -demethylation of lignin-derived aromatics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc04698aDOI Listing

Publication Analysis

Top Keywords

cytochrome p450
8
p450 enzymes
8
efficient -demethylation
4
-demethylation lignin
4
lignin monoaromatics
4
monoaromatics peroxygenase
4
peroxygenase activity
4
activity cytochrome
4
enzymes crucial
4
crucial reaction
4

Similar Publications

Overexpression of CYP6CY1 is Involved in Imidacloprid Resistance in Sitobion miscanthi (Takahashi) (Homoptera: Aphidae).

Neotrop Entomol

January 2025

College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, China.

Sitobion miscanthi is a wheat aphid species that can damage seriously agricultural production. The effective management of wheat aphids has depended on chemical insecticides. However, their wide application led to severe resistance of wheat aphids to some insecticides, and cytochrome P450 as a detoxifying enzyme plays a crucial role in the insecticide resistance.

View Article and Find Full Text PDF

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

Obesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.

View Article and Find Full Text PDF

New Insights into the Pathogenesis of Alcoholic Liver Disease Based on Global Research.

Dig Dis Sci

January 2025

Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China.

Background And Aims: Alcoholic liver disease (ALD) is the leading cause of death among alcohol-related diseases, yet its pathogenesis remains incompletely understood. This article employs data mining methods to conduct an indepth study of articles on ALD published in the past three decades, aiming to elucidate the pathogenesis of ALD.

Methods: Firstly, articles related to the pathogenesis of ALD were retrieved from the Web of Science (WOS) database.

View Article and Find Full Text PDF

Biosynthesis of lactacystin as a proteasome inhibitor.

Commun Chem

January 2025

Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Lactacystin is an irreversible proteasome inhibitor isolated from Streptomyces lactacystinicus. Despite its importance for its biological activity, the biosynthesis of lactacystin remains unknown. In this study, we identified the lactacystin biosynthetic gene cluster by gene disruption and heterologous expression experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!