Purpose: To investigate the static magnetic field generated by a proton pencil beam as a candidate for range verification by means of Monte Carlo simulations, thereby improving upon existing analytical calculations. We focus on the impact of statistical current fluctuations and secondary protons and electrons.

Methods: We considered a pulsed beam (10 s pulse duration) during the duty cycle with a peak beam current of 0.2 A and an initial energy of 100 MeV. We ran Geant4-DNA Monte Carlo simulations of a proton pencil beam in water and extracted independent particle phase spaces. We calculated longitudinal and radial current density of protons and electrons, serving as an input for a magnetic field estimation based on a finite element analysis in a cylindrical geometry. We made sure to allow for non-solenoidal current densities as is the case of a stopping proton beam.

Results: The rising proton charge density toward the range is not perturbed by energy straggling and only lowered through nuclear reactions by up to 15%, leading to an approximately constant longitudinal current. Their relative low density however (at most 0.37 protons/mm for the 0.2  A current and a beam cross-section of 2.5 mm), gives rise to considerable current density fluctuations. The radial proton current resulting from lateral scattering and being two orders of magnitude weaker than the longitudinal current is subject to even stronger fluctuations. Secondary electrons with energies above 10 eV, that far outnumber the primary protons, reduce the primary proton current by only 10% due to their largely isotropic flow. A small fraction of electrons (<1%), undergoing head-on collisions, constitutes the relevant electron current. In the far-field, both contributions to the magnetic field strength (longitudinal and lateral) are independent of the beam spot size. We also find that the nuclear reaction-related losses cause a shift of 1.3 mm to the magnetic field profile relative to the actual range, which is further enlarged to 2.4 mm by the electron current (at a distance of  mm away from the central beam axis). For  mm, the shift increases linearly. While the current density variations cause significant magnetic field uncertainty close to the central beam axis with a relative standard deviation (RSD) close to 100%, they average out at a distance of 10 cm, where the RSD of the total magnetic field drops below 2%.

Conclusions: With the small influence of the secondary electrons together with the low RSD, our analysis encourages an experimental detection of the magnetic field through sensitive instrumentation, such as optical magnetometry or SQUIDs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.16062DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
proton pencil
12
pencil beam
12
current
10
field generated
8
generated proton
8
monte carlo
8
carlo simulations
8
fluctuations secondary
8
current density
8

Similar Publications

The dorsolateral prefrontal cortex (dlPFC) is increasingly targeted by various noninvasive transcranial magnetic stimulation or transcranial current stimulation protocols in a range of neuropsychiatric and other brain disorders. The rationale for this therapeutic modulation remains elusive. A model is proposed, and up-to-date evidence is discussed, suggesting that the dlPFC is a high-level cortical centre where uncertainty management, movement facilitation, and cardiovascular control processes are intertwined and integrated to deliver optimal behavioural responses in particular environmental or emotional contexts.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.

View Article and Find Full Text PDF

Deep cascaded registration and weakly-supervised segmentation of fetal brain MRI.

Heliyon

January 2025

BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Deformable image registration is a cornerstone of many medical image analysis applications, particularly in the context of fetal brain magnetic resonance imaging (MRI), where precise registration is essential for studying the rapidly evolving fetal brain during pregnancy and potentially identifying neurodevelopmental abnormalities. While deep learning has become the leading approach for medical image registration, traditional convolutional neural networks (CNNs) often fall short in capturing fine image details due to their bias toward low spatial frequencies. To address this challenge, we introduce a deep learning registration framework comprising multiple cascaded convolutional networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!